
Introduction

When a two-phase mixture in its homogeneous phase is quenched below the critical 

coexistence temperature, it becomes thermodynamically unstable and evolves towards a 

new equilibrium state, consisting of regions which are rich in one or the other constituents of 

the mixture [1]. In this situation, nuclei of the minority phase are formed. Then, on a slower 

timescale, the spatial regions of the separated material begin to grow. This process is called 

"coarsening". The Cahn-Hilliard model describes how the concentration of the constituents 

diffuse through the system. In this model the basic ingredient is a conserved concentration 

field, y(r,t), representing the difference in concentration of the two components of the 
mixture. Two examples are the segregation of a binary alloy or the separation of two-

component fluid like oil and water. One prediction is that the characteristic domain size 

obeys the Lifshitz-Slyozov (LS) relation R(t) ~ t1/3, where R(t) is a characteristic domain size 

and t is the time.

Numerical simulations carried out by Prof. Timothy Sullivan in the Department of Physics at 

Kenyon College and Prof. Peter Palffy-Muhoray at Kent State University's Liquid Crystal 

Institute revealed that for some compositions of the mixtures in a system, the LS relation 

does not hold even at late time[2]. Numerical simulations were carried out on a system with 

various concentrations of the two components for initial conditions with a random distribution 

using a standard deviation of 0.5. This paper is the follow up of this investigation for initial 

conditions with random distribution using the standard deviation of 0.001 to see how the 

standard deviation affects the results.

Cahn-Hilliard model & Data Analysis Procedure

The dimensionless Cahn-Hilliard(CH) equation can be expressed as :

where y is the dimensionless local difference in concentration between the two components of 
the system. We denote the average value of y at the initial condition as <y>o.
The structure formation in the system during the phase separation process is analyzed in 

terms of the normalized time-dependent structure factor s(k,t):

The pair correlation function G(r,t) was calculated by taking the Fourier Transform of s(k,t):

The first zero of the circularly averaged pair correlation function, RG(t), was taken to be the 

characteristic length of the pattern. Finally RG(t) was fitted to the form:

at each <y>o, where a, b and c are the constants determined by the fits.

The classical Lifshitz-Slyozov (LS) relation predicts that RG(t) ~ t
1/3 if the system is in the 

scaling regime. For different <y>o the scaling regime is reached at different times. The process 
of phase separation is faster at the beginning and slower at later time, which the RG function 

does not represent explicitly. Thus we need a quantity independent of the domain size which 

can represent the structure of the minority component regions in a better way. To achieve this, 

the concept of a “moment ratio” was investigated[3]. To determine whether the system was in 

the scaling regime, the “moment ratio” was calculated by taking the ratio of the moment of 

inertia of the actual blob to the moment of inertia of a circular disk with an area equal to that 

blob. Then h was defined as: h = Moment ratio – 1, which is a measure of the non-circularity of 
a blob. By observing the change of h as a function of time, we can determine the scaling 
regime. For our experiment, the data was defined to be in the scaling regime if it satisfied the 

condition: h = h + 0.1 ho, where ho is the value of h at t = 200000. The fit for RG(t) was then 
restricted to the scaling regime and the value of b(<y>o) was determined at each <y>o.

Time evolution of the minority region forms extended blobs for values of <y>o near the critical 
quench but forms circular blobs for values further from the critical quench. For <y>o near the 
critical quench, the value of h does not reach 0 in a finite time as the blobs don't really form 
circular pattern, while for greater <y>o, the value of h reaches near to 0 in finite time. To 
investigate the transition of these two regimes as <y>o changes from 0 to 1, we calculated the 
value of ho = at t →¶ (¶ = 200000 in our case) for each <y>o By looking at the graph of ho as 
a function of <y>o we can determine the region where the transition between the two regimes 
occur.

Numerical Results

Figs. 1 and 2 show that the time evolution of the minority region forms extended blobs for 

values of <y>o near the critical quench but forms circular blob for values further from the 
critical quench. For greater values of <y>o circular blobs are formed at very early time 
while for <y>o at critical quench even at t=200,000 the blobs are not close to becoming 
circular. This indicates that there is a critical value of <y>o = <y>c such that the time 
evolution of the minority constituent in the system is determined by which side of <y>c
lies the given <y>o.

Fig. 2 shows the value of h as a function of time for various <y>o. The measure of the 
non-circularity of the minority component, h, seems to follow a double exponential decay 
curve as a function of time. We can clearly see that the value of h for <y>o at the critical 
quench is asymptotic to a non-zero value but for higher value of <y>o the curve 
exponentially decays to zero. This confirms the evidence from Fig. 1 that the blobs for 

<y>o less than <y>c do not form circles in a finite time. For <y>o greater than <y>c, the 
blobs do form isolated circles in finite time.

For each value of <y>o, the data in the scaling regime was fitted to Eqn 4 using the  
nonlinear Levenberg-Marquardt  c2 minimization as implemented in the data analysis 
software package Origin. Fig 3 shows the fits to the data.

For smaller value of <y>o the concentration of the minority component in the system is 
greater. Thus the characteristic length of the pattern, RG is greater for smaller value of 

<y>o . Also notice that as the value for< y>o gets larger the RG graphs look similar. 

Finally, the resulting fit exponent, b<(>yo), was plotted against<y>o. 

Fig. 4 shows that for 0.025 < <y>o < 0.1, RG(t) does not follow the Lifshitz-Slyozov (LS) relation in the time interval 
over which the simulations were carried out. The largest deviation from LS relation is observed at <y>o = 0.06, where 
b = (0.237 ± 0.001). This is evidence that there is a critical value of <y>o above which the system quickly evolves to 
isolated circular blobs which grow in time. To further investigate this transition we now look at the moment ratio for 

each <y>o as time goes to infinity (t = 200,000 in our case).

The rate of change of slope of the graph in Fig. 5 is maximum as <y>o goes from 0.05 to 0.1. This is the region we 
see in Fig. 4 where RG(t) deviated most from the LS relation. This further indicates that there is a critical region of 

<y>o which acts as a boundary for the two regimes.

Figures 6 and 7 show the dependence of the time evolution on the standard deviation used for the random initial 

conditions. We can also see that for small values of s the RG graphs are similar. The moment ratio graph shows that 
the geometric structure of the blobs are similar at a given time for smaller s. It also shows that the difference in the 
value of h for different s is decreasing as the time increases. We could see that the moment ratio will eventually 

converge to a single asymptotic horizontal line for all s at a given <y>o.

Discussion
One end of an oil molecule is hydrophilic while the other is hydrophobic. When two fluids with different chemical 

properties, such as oil and water, are mixed then the enthalpy of the homogeneous state is greater than the 

separated state. Under these conditions, infinitesimal variations in the local composition of the mixture lower its free 

energy and lead to phase separation. This is called spinodal decomposition which takes place at a very early stage of 

the separation process. In the initial decomposition, the two components separate into regions containing dominantly 

one type of fluid. In the late stage, surface tension is the driving force for domain coarsening.

The Lifshitz-Slyozov relation does not account for cluster correlations. For greater <y>o, the cluster interactions are 
reduced. So the LS prediction is more likely to be valid. For smaller <y>o, cluster interaction is stronger in the earlier 
stages, resulting in convoluted, noncircular domains (see Fig. 1). Thus, for different <y>o, the scaling regime is 
different. The scaling regime is the time interval where the blobs slowly grow in size rather than change shape. This 

is the region where the LS relation is expected to be valid. The measure of non-circularity, h, is used to determine the 
scaling regime during the phase separation. This is affected by the shape of the blob but not the size. Thus, the 

scaling regime is said to be reached if h stops changing with time.

Eqn. 1 assumes that the only force acting on the two components of the mixture is the inter-molecular force due to 

the difference in their local concentrations. Thus, the simulation of the CH equation requires that the size of the 

domain be infinitely large as compared to the blobs. For the grid size of 100x100 the periodic boundary condition 

influences the time evolution of the minority regions. For 540x540 grid size the boundaries had less effect. Thus the 

time evolution of the blobs follow the LS relation more closely. Also for the smalerl grid size, a smaller number of 

blobs are produced which quickly forms into a single blob making it more difficult to investigate the phase change 

statistically.

When s is smaller, the blobs are concentrated into points at the initial time step. The average blob separation is 

large. Thus it takes some time for them to get organized into larger blobs. Whereas for larger s the blobs at the initial 
time are more loosely packed and their outer layer can be easily attracted by the neighboring blobs. Thus, they 

quickly form larger blobs and grow faster in time as compared to the mixtures with smaller s.

Cahn-Hilliard Simulation
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Independently the sixty sets of 

data were analyzed. For each 

composition the data were 

collected at a time interval of 

1000 for t § 20000, at an 

interval of 2000 for 20000 < t §
100000 and 5000 for t > 

100000. To investigate the 

effect on the time evolution 

due to the difference in 

standard deviation of the 

random distribution at the 

initial condition, simulations 

were carried out at different s
for a given <y>o. For <y>o = 
0, 0.2, 0.5, simulations were 

carried out for s= 0.001, 0.01, 
0.1, 0.2, 0.5 up to a 

dimensionless time of 20,000. 

For <y>o = 0, 0.025, 0.05, 0.06, 
0.075, 0.1, 0.15, 0.2, 0.25, 0.3, 

0.4, 0.5 (all at s = 0.001), 

simulations were run for a 

dimensionless time of 200000

to investigate the late time 

evolution of the minority 

regions.

For our numerical simulations, 

the two-dimensional CH 

equation was solved for 

various values of yo from 0 to 
0.5. Eq(1) was discretized

using the forward-time, 

centered-space (FTCS) 

scheme. The algorithm was 

coded in C and C++. The grid 

size in space was 540 x 540 

with step one in dimensionless 

length. Simulations on a grid 

size of 100 x 100 and 50 x 50 

were also carried out for <y>o
= 0, 0.2, and 0.5 to see the 

effect of the domain size on 

the time evolution of the 

minority region. For reasons of 

stability, the time step used 

was D t = 0.001 for 0 § t §
100, D t = 0.025 for 100 § t §
1000, and D t = 0.04 for t > 

1000. Periodic boundary 

condition were used for all the 

simulations. 

In each case, the initial 

conditions were created by 

assigning each node a value of 

y chosen using a Gaussian 

distributed random number 

generator with mean value <y>o
and a standard deviation of  s. 
For each <y>o, 60 different 
random initial conditions were 

created and the 2D CH 

equation was solved for each 

condition. 

Fig. 1 Example patterns of minority region (in black) 

as a function of y
o
and time for s = 0.001.
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Figure 2. h as a function of time. Figure 3. RG vs t for different yo at s = 0.001.
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