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Abstract
Early	in	its	history,	the	universe	grew	by	dozens	of	e-foldings in	just	a	fraction	of	

a	second,	an	event	called	inflation.	Somewhere	down	the	line,	the	universe	evolved	
to	its	present	state	and	humans	started	looking	up	at	the	stars	with	their	
telescopes.	But	do	we	know	anything	else	that	happened	between	this	early	stage	
of	the	universe	and	now?

After	inflation	came	a	period	of	time	called	reheating.	The	inflaton field,	the	
field	that	drove	inflation,	expanded	so	quickly	that	we	need	a	way	to	account	for	
the	high	temperature	of	the	universe	after	inflation.

During	my	summer	research,	I	examined	the	process	of	reheating,	specifically	
by	taking	the	effect	of	local	gravity,	𝝍,	into	consideration.	By	calculating	the	local	
gravitational	potential	at	each	point	in	a	simulation	of	the	early	universe,	it	is	
possible	to	perturb	the	metric	that	describes	the	expansion	of	the	universe.	
Accounting	for	small	perturbations	allows	a	more	accurate	description	of	the	
evolution	of	the	universe.

In	my	project,	I	detail	the	differences	between	the	Friedmann-Lemaître-
Robertson-Walker	metric	(the	‘usual’	way	of	describing	expansion)	and	the	linear	
perturbed	metric	that	accounts	for	gravity.	I	analyze	the	results	of	both	simulations	
in	order	to	see	what	effect	these	linear	perturbations	have	during	reheating.	
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								The	Friedmann-Lemaître-Robertson-Walker	(FLRW)	universe	is	
characterized	by	being	flat,	homogeneous,	and	isotropic.	The	expansion	rate	is	
the	same	at	every	point	in	the	universe.	The	expansion	can	be	described	by	
the	FLRW	metric

𝑑𝑠% = −𝑑𝑡% + 𝑎% 𝑡 𝑑𝑥% + 𝑑𝑦% + 𝑑𝑧% ,
Where	t	is	the	time	component,	x,	y,	and	z	are	the	spacial	components,	and	a	
is	the	scale	factor.	This	metric	yields	the	Klein-Gordon	equation	of	motion
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where	𝜙	is	the	inflaton	field.	This	equation	of	motion	can	be	modeled	by	
Kenyon’s	program	GABE	(Grid	and	Bubble	Evolver),	which	is	a	C++	program	
that	evolves	scalar	fields	on	an	expanding	background.	It	simulates	the	
evolution	of	the	universe	for	this	model	and	for	others.	
							

								As	opposed	to	the	FLRW	universe,	consider	a	perturbed	universe.	This	
universe	is	curved	and	inhomogeneous,	and	it	takes	the	Newtonian	gravitational	
potential,	𝝍,	into	consideration	as	an	even	better	approximation	for	an	
expanding	universe.	Because	of	this,	expansion	is	not	the	same	everywhere,	as	it	
is	influenced	by	local	gravity.	So,	the	perturbed	metric	is

𝑑𝑠% = −(1 + 2𝜓)𝑑𝑡% + 𝑎% 𝑡 (1 − 2𝜑) 𝑑𝑥% + 𝑑𝑦% + 𝑑𝑧% ,
and	we	will	assume	no	anisotropic	stress,	which	means	𝜑 = 𝜓.	The	linearized	
perturbed	equation	of	motion	that	corresponds	to	this	metric	is
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where	𝐻 =	 2̇
2
.	We	can	see	that	if	𝜓 = 0,	we	will	recover	the	Klein-Gordon	

equation	of	motion.	
							The	potential	that	is	used	in	GABE	for	both	the	FLRW	and	perturbed	
universes	is
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where	𝜒	is	a	generic	scalar	field.	This	quadratic	potential	is	a	simple	toy	model.	It	
features	a	coupling	term,	g,	which	allows	interaction	between	the	𝜙	and	𝜒	fields.

								The	Newtonian	gravitational	potential,	𝝍,	is	a	function	of	both	space	
and	time,	which	is	why	expansion	is	not	the	same	everywhere.	𝝍	is	strongly	
influenced	by	the	energy	density	of	the	universe,	𝜌:

∇%𝜓 = 4𝜋𝐺𝑎%𝛿𝜌.
	We	assume	that	𝜓	stays	small	(hence	or	ability	to	use	it	in	perturbation	
theory),	so	only	linear-order	terms	are	considered.
								The	differential	equations	for	𝜓	are
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𝛿𝜌	and

𝜓̇ = 4𝜋𝐺𝜙Ȯ𝛿𝜙 − 𝐻𝜓.
𝜓	can	then	be	solved	for	in	GABE	using	a	series	of	Fourier	transformations.
								One	way	to	see	the	effect	that	𝜓	has	on	the	simulation	is	by	allowing	
backreaction.	With	no	backreaction,	𝜓	is	calculated,	but	the	EOM	is	not	
perturbed,	so	the	value	of	𝜓	has	an	influence	on	the	evolution	of	the	
simulation.	With	backreaction,	𝜓	is	calculated	and	we’re	using	the	
perturbed	EOM,	so	because	the	perturbed	EOM	depends	on	𝜓,	𝜓	influences	
the	evolution	of	the	simulation.	Figure	1	shows	the	variance,	maximum,	and	
minimum	values	for	𝜓,	and	shows	the	effect	that	backreaction	has.

Figure	1	Values	for	the	gravitational	potential,	𝜓

In	addition,	we	can	also	examine	the	relationship	between	𝜓 and	the	
energy	density	𝜌.	Figure	2	demonstrates	that	high	energy	density	
corresponds	to	low	values	of	𝜓,	and	low	energy	density	corresponds	to	
higher	values	of	𝜓.	In	both	Figure	1	and	Figure	2,	𝜓 never	gets	to	be	more	
than	~ 10QR ,	which	means	that	perturbations	stay	small	and	should	not	
have	a	large	effect	on	the	simulation	of	reheating.

Figure	2	The	color	bar	on	the	right	shows	the	fractional	energy	density	of	the	universe,	
SQST
STT
,	where	darker	colors	correspond	to	underdensities	and	lighter	colors	correspond	

to	overdensities.	The	color	bar	on	the	bottom	shows	𝜓,	where	green	is	∼0.

Compared	to	an	FLWR	run,	the	perturbed	EOM	
shows	only	small	variations	(see	Figure	3),	which	can	be	
expected	due	to	the	small	values	that	𝜓 has.	

Figure	3	Reheating	run	for	FLRW	and	perturbed	EOMs,	at	a	
box	size	of	𝐿 = 4𝑚8

QW

When	the	box	size	is	increased,	modes	with	longer	
wavelengths	are	included	in	the	initial	field	spectra	(see	
Figure	4),		which	makes	the	simulation	quickly	become	
unphysical.

Figure	4	Power	for	various	box	sizes

By	changing	the	effective	mass,	it	is	possible	to	modify	
the	initial	field	spectra,	but	it	is	not	enough	save	the	
simulation	from	physical	behavior.

Figure	5	At	a	box	size	of	𝐿 = 120𝑚8
QW,	the	simulation	lasts	

for	less	than	3𝑚8
QW before	𝜓 > 1 (compared	to	being	

about	to	run	for	400𝑚8
QW or	longer).	When 𝜓 > 1,	or	

even	gets	close	to	1,	perturbation	theory	breaks	down	and	
the	simulation	no	longer	exhibits	physical	behavior,	even	
for	the	modified	effective	mass.

					The	gravitational	potential	does	indeed	have	varying	
effects	on	the	evolution	of	the	early	universe,	the	extent	
of	which	depend	on	box	size	and	other	parameters.	To	
be	able	to	fully	examine	and	expand	upon	the	ideas	
presented	here,	it	will	be	necessary	to	go	beyond	the	
linearized	perturbed	EOM	to	include	non-linear	terms,	
and	to	find	a	more	accurate	way	to	calculate	𝜓	and	𝜓̇.	
In	addition,	full	general	relativity	will	probably	have	to	
be	taken	into	consideration.
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