
One	useful	tool	of	studying	perfect	numbers	is	abundancy	
index.	The	abundancy	index	of	a	positive	integer	𝑛 is	the	
rational	number		𝐼 𝑛 = 𝜎 𝑛 /𝑛 = ∑ 𝑑�

)|+ /𝑛 .	By	definition,	
the	abundancy	index	of	a	perfect	number	is	2.	In	fact,	the	
abundancy	index	is	a	function	𝐼 mapping	the	set	of	natural	
numbers	to	the	rationals 𝐼: 	ℕ → ℚ	 ∩ 1,∞ .	In	the	1970’s,	
Erdös	proved	that	the	map	is	not	surjective.	For	example,	
5/4 = (2<+1)/2<	is	not	in	the	image	of	𝐼.	Hence,	we	define	
an	abundancy	outlaw	is	a	rational	number	not	in	the	image	of	
the	map	𝐼.	It	has	been	proved	that	both	the	sets	of	abundancy	
indexes	and	abundancy	outlaws	are	dense	in	the	interval	
(1,∞),	which	adds	complexity	to	the	problems	related	to	
perfect	numbers.	
Theorem (Holdener 2007)[1]	There	exists	an	odd	perfect	
number	iff there	exist	positive	integers	𝑝, 𝑛 and	𝛼 such	that	
𝑝 = 𝛼 = 1 𝑚𝑜𝑑	4 , where	𝑝 is	a	prime	not	dividing	𝑛,	and	

𝐼	(𝑛) = <CD	(CEF)
CDGHEF	

This	theorem	indicates	that	understanding	the	sets	of	
abundancy	indices	and	outlaws	is	important	for	exploring	
questions	relating	to	perfect	numbers.
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The	abundancy	index	of	a	positive	integer	n	is	defined	to	be	the	
rational	number	𝜎(𝑛)/𝑛 where	𝜎(𝑛) = ∑{)|+}	𝑑	is	the	sum	of	the	
divisors	of	𝑛,	and	𝐼: 𝑁 → ℚ ∪ (1,∞) is	the	function	defined	by	
𝐼(𝑛) = 𝜎(𝑛)/𝑛.	Erdös showed	that	𝐼	is	not	onto,	and	if	𝑚/𝑛 > 1
fails	to	fall	in	the	range	of	𝐼,	then	𝑚𝑛 is	called	an	“abundancy	
outlaw.”	 In	this	research	we	examined	the	form	of	positive	
integers	𝑁 satisfying	 𝐼(𝑁) = (2𝑥 − 1)/𝑥,	where	x	is	a	positive	
integer.	Rational	numbers	of	the	form	(2𝑥 − 1)/𝑥 are	important	
since	both	even	and	odd	perfect	numbers	have	a	divisor	with	
abundancy	index	of	this	form.	We	discovered	that	there	are	many	
even	integers	satisfying	the	condition,	and	we	characterized	some	
patterns	exhibited	by	such	even	integers.	 Among	the	odd	integers,	
however,	we	were	only	able	to	identify	one	odd	integer	𝑁 less	than	
10Q satisfying	𝐼(𝑁) = (2𝑥 − 1)/𝑥.
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A perfect number is a natural number equal to the sum of all
its proper divisors, e.g. 6, 28, 496, 8128…The symbol 𝜎(𝑛)	is used
to represent the sum of all the divisors of a natural number 𝑛
including itself.
For perfect numbers: 𝜎(𝑛) = 2𝑛
𝜎(6) = 1 + 2 + 3 + 6 = 2(6)
𝜎	(28) 	= 1 + 2 + 4 + 7 + 14 + 28 = 2(28)

Perfect numbers have intrigued many mathematicians from
ancient time. The first record of it appears on Euclid’s Elements. It
terms out the characterization of this type of number is not very
straightforward. In fact, there are two major open
problems in mathematics relating to perfect numbers.

v Are there infinitely many even perfect numbers?
§ Euclid proved over 2000 years ago that if 2C − 1 is a Mersenne

prime, then 2CEF 2C − 1 is an even perfect number.
§ Later Euler proved that if 𝑁 is an even perfect number, then it

has the form 2CEF 2C − 1 ,	completely characterizing even
perfect numbers.

§ There are 49 known Mersenne primes and hence 49 known
even perfect numbers. The largest known even perfect number
is: 2<WX,<YW,<QY(2<WX,<YW,<QF − 1).

§ This question is equivalent to whether there are infinitely many
Mersenne primes.

v Are there any odd perfect numbers?
• In 1953, Touchard proved that an odd perfect number must be

of the form 2𝑘 + 1 or 36𝑘 + 9.[5]
• It has been checked computationally for odd numbers up to
10[YY without success.

§ Nielson (2006) proved that an odd perfect number must have
at least 9 distinct prime factors.

§ Euler gave a famous characterization of odd perfect numbers
Theorem If 𝑁 is an odd perfect number, then 𝑁 must have the
form

𝑁 = 𝑝\𝑝F<\H𝑝<<\] ⋯𝑝_<\`

where 𝑝, 𝑝F, 𝑝<,…, 𝑝_ are primes and 𝑝 = 𝛼 = 1(𝑚𝑜𝑑	4).

Even	Perfect	Numbers

Odd	Perfect	Numbers Here	are	some	characterization	of	the	integers	𝑁 such	that	
𝐼 𝑁 = (2𝑥 − 1)/𝑥.	We	first	consider	the	case	where	𝑁 is	
even.
• Case	1	(One	prime	factor):
When	𝑁 = 2a	for	some	positive	integer	𝑚,
𝐼 𝑁 = 𝐼 2a = <bGHEF

<b
= <c<bEF

<b
= <c<bEF

d	 	 where	𝑥 = 2a.
All	𝑁 = 2a	satisfy	the	equation!	(2a	is	almost	perfect.)
• Case	2	(Two	distinct	prime	factors):	
We	prove	that	if	𝑁 = 2a𝑝e	for	some	positive	integers	𝑚 and	
𝑘 and	𝐼(𝑁) = (2𝑥 − 1)/𝑥	for	some	𝑥 ∈ ℕ,	then	𝑘 = 1.	
• Case	3	(More	that	two	distinct	prime	factors):	

This	case	gets	complicated!
We	ended	up	examining	integers	of	the	form	𝑁 =
2a𝑝F𝑝< ⋯𝑝+ where	2 < 𝑝F < 𝑝< < ⋯ < 𝑝+.

𝒎
Some  𝒏 = 𝟐𝒎𝒑𝟏𝒌𝟏𝒑𝟏𝒌𝟐 ⋯𝒑𝒏𝒌𝒏<𝟏𝟎𝟖 with 𝟏 ≤ 𝒎 ≤5 

satisfying  𝑰 𝒏 = 𝟐𝒙E𝟏
𝒙

1 (2)(5)

2 2 < 11 , 2 <(13)(17), 2 < 11 < 29 197

3
2 [ 17 , 2 [ 19 , 2 [ 23 ,	

2 [ 19 113 , 2 [ 17 (137),	 2 [ 17 (139),	 2 [ 17 < 307
2 [ 37 41 73 , 2 [ 37 47 < 61 , 2 [ 27 149 1489

4
2 X(47)

2 X 59 67 , 2 X 41 131 , 2 X 41 163 , 2 X(37)(197)
2 X 37 199 , 2 X 41 163 (653)

5
2 s 67 , 2 s 71 , 2 s 79 ,	

2 s 109 151 , 2 s 97 193 , 2 s 79 317 ,
2 s 71 569 , 2 s 71 571 , 2 s 71 709 , 2 s(67)(1607)

Theorem:	Suppose	n ≥ 2 and	𝑝F< 𝑝< < ⋯ < 𝑝+ are	odd	
primes.	If	N = 2a𝑝F𝑝< ⋯𝑝e satisfies	𝐼(𝑁) =

<dEF
d

for	some	
𝑥 ∈ ℕ,	then	for	all	1 ≤ 𝑘 ≤ 𝑛.
𝑘σ(2a) < 𝑝e
< σ(2a)σ(𝑝F)⋯𝜎(𝑝eEF)(𝑛 − (𝑘 − 1)) + 2a𝑝F𝑝< ⋯𝑝eEF
Now	let’s	look	at	the	case	where	𝑁 is	odd…
We	have	only	found	one	odd	example	by	searching	for	𝑁 up	
to	10Q: 𝑁 = 3<7<11<13<

• 3<7<11<13< is	a	square.
• In	fact,	it’s	easy	to	prove	that	if	𝑁 is	odd	and	𝐼 𝑁 =
(2𝑥 − 1)/𝑥,	then	𝑁 is	a	square.	

• Take	a	close	look	at	𝐼(3<7<11<13<)…

𝐼(3<7<11<13<)=
𝜎 3<

3<
𝜎 7<

7<
𝜎 11<

11<
𝜎 13<

13<

=
13
3< c

3 c 19
7< c

7 c 19
11< c

3 c 61
13<

=
19< c 61
7 c 11< c 13 =

2 7 c 11< c 13 − 1
7 c 11< c 13 =

22021
11011

v Explore	the	pattern	for	the	more	general	case	
𝑁 = 2a𝑝FeH𝑝<e] ⋯𝑝+ex

v The	odd	case:
• Are	there	any	more	odd	𝑁 such	that	𝐼 𝑁 = <dEF

d
? Can	we	

characterize	them?
• Why	are	odd	cases	so	rare?

§ We	investigated	rationals of	the	form	z + {|
+

where	𝑡 > 0,	
because	rationals of	the	form	𝑘/𝑛 where	𝑛 < 𝑘 < σ(𝑛)
are	already	known	to	be	outlaws.

o For	example,	consider				5/3 = (σ 3 + 1)/3
§ Hard	Open	Problem:			Is		5/3 an	index	or	an	outlaw?[4]

If		z(+)
+
= s

[
for	some	𝑛,	then	z(s+)

s+
= z(s)z(+)

s+
= ~

s
c s
[
= 2.

So	5𝑛 is	an	odd	perfect	number.	

Observe	that	 s
[
= <([)EF

[
= <dEF

d
where	𝑥 = 3

§ Ryan	(2003)	also	explored	the	rationals in	this	form	and	
here	is	his	results [3].

Theorem Suppose	we	have	a	fraction	of	the	form	(2𝑥 − 1)/𝑥,	
where	2𝑥 − 1	is	prime.	𝑖)	If	𝑥 is	even,	but	not	a	power	of	2,	
then	(2𝑥 − 1)/𝑥	is	an	outlaw.	𝑖𝑖) If	n	is	odd	and	𝐼 𝑏 = <dEF

d
,

then	𝑏 is	odd;	moreover,	if	2𝑥 − 1 does	not	divide	𝑏 then	
𝑏(2𝑥 − 1) is	a	perfect	number.


