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Module Overview 

This computational science module covers the basics of logarithms and exponents 
(i.e., magnitude scales) and the statistical technique of least-squares regression in the 
context of biological scaling, or allometry. Allometry is the study of how various aspects 
of life change quantitatively with organism size. The idea of magnitude (and thus 
logarithms and exponentiation) is essential in this context because organisms span an 
astounding 21 orders of magnitude in mass. That is, the largest organisms, like blue 
whales and giant sequoias, are approximately 10,000,000,000,000,000,000,000 (or ten-
thousand-million-million-million) times heavier than the smallest bacteria, yet all 
organisms must abide by the same laws of physics, biochemistry, genetics, physiology, 
and evolution. Comparing organisms on magnitude or logarithmic scales allows us to 
better understand how the various aspects of biological form, function, and diversity 
change with organism size.  

The module was originally designed to provide undergraduate non-science majors 
with the tools necessary for understanding biological scaling and allometric data and 
models. As such, I assume very little knowledge of biology, statistics, and mathematics. 
For example, in describing least-squares regression, I do not provide the mathematical 
details of computing the regression line, as that would entail an understanding of basic 
statistical concepts of mean, variance, and correlation, as well as the particulars of 
statistical inference. Instructors could certainly extend this section to include such details, 
as I do when I include this exercise in my introductory statistics class. 

The Background part of the module reviews the basic mathematics of logarithms and 
power functions, with the goal of having students: i)  understand logarithmic and 
exponential operations and their algebraic rules, and ii) grasp the utility (and meaning) of 
“magnitude scales.” The Model Details section provides the basics of graphical 
relationships between two biological variables using log-log scatterplots and their 
mathematical description using least-squares regression. In the Model Assessment section 
of the module, the students are then asked to: i) construct and qualitatively interpret 
trends in bivariate scatterplots, ii) construct and interpret least-squares regression models, 
including the regression equation, residual variation and R2 value, iii) apply logarithmic-
transformation to data, and iv) interpret log-log (power-law or multiplicative) graphs and 
regressions. 

The module uses Microsoft Excel, because it is widely available and generally 
familiar to students even outside of the sciences. However, it could easily be adapted (and 
extended) with more powerful statistical software like Minitab, Systat, SAS, SPSS, or the 
freely available R. 



 
Introduction 

Individual organisms span an amazing size range. The ratio of the mass of a redwood or a 
blue whale to that of a bacterium is approximately 1021; that is, a redwood is ten-thousand-
million-million-million times heavier than the smallest bacteria. To put this ratio into 
perspective, it is similar to the mass ratio of the Moon to a typical human, that of a human to 
a single molecule of cytochrome-c oxidase (a protein that facilitates cellular respiration), and 
that of the known universe to our Sun! The scales of ecological interactions between species 
are yet broader, spanning over 30 orders of magnitude (powers of 10) in mass, from the 
smallest interacting microbes to the entire biosphere (which is estimated to weigh in at 
~1.8X1019 g). Even among the more familiar land mammals, an elephant is almost six orders 
of magnitude (i.e., 106 or one million times) heavier than the smallest mouse. Thus, 
understanding biodiversity and the ecological complexity of life on Earth is, at least in part, a 
matter of scale. 

An organism’s size affects nearly every aspect of how it lives. For example, because they 
are “small,” ants can walk up a vertical surface and survive a fall from any height without 
injury.  The same is clearly not true for humans. A mouse’s heart beats 500 times per minute, 
while an elephant’s only beats 28 times, but over their lifetimes, both will experience (on 
average) approximately the same number of heartbeats – about 1.5 billion. Why 1.5 billion? 
Understanding how life must change with size is one of the keys to explaining these sorts of 
mysteries and to developing a more complete understanding of how nature works. 

 
Statement of problem or question 

As the ecologist Robert McArthur put it, to do science “is to search for repeated patterns, 
not simply to accumulate facts.” In this case, we are searching for patterns that apply across 
all creatures, great and small. So the question arises: how can we describe the changing 
characteristics of life over a large range of sizes?  

Interestingly, despite the daunting complexity and variety of biological phenomena, they 
often exhibit striking mathematical regularities called scaling laws. In the most general sense, 
scaling laws are simply quantitative descriptions of how some property of a system changes 
along one of the fundamental dimensions of the system. These dimensions may be physical 
dimensions like mass, length, or time. Alternatively, the dimension of interest may be more 
specifically biological, such as the mean population density of a species or the area of an 
island or habitat patch.  

Among the most well known scaling laws in biology are so-called allometric 
relationships between organism size and various aspects of form, physiology, and ecology. 
The term allometry, which translates from Greek as, “other measure,” was coined by Julian 
Huxley and George Tessier in 1936. While the term was originally applied to changes in the 
morphological proportions of organisms as they grew, it now is used to describe the study of 
size-related changes in living things more generally. Here we will model developmental 
changes in the metabolism of the tobacco hawkmoth caterpillar, Manduca sexta, but similar 
allometric analyses can be applied to a wide variety of biological and ecological phenomena. 
Metabolism is the sum of biochemical processes carried out in the cells of living things by 
which energy is provided and materials assimilated for all vital processes and activities. The 
fundamental importance of metabolism to all living things has made it the focus of many 



allometric studies. Furthermore, the statistical method we will be using, called least-squares 
regression, is used in a wide variety of other situations. 

 
Background information 

Allometric scaling laws typically take the form of a power function: 

€ 

Y = aX b  
where Y is the property of interest (e.g., metabolic rate), X is the size of the observed 
entity along the dimension of interest (e.g., organism body mass), and a and b are called 
the scaling coefficient and exponent, respectively. The equation provides a mathematical 
model of the relationship between two measurable, biological variables. This exercise is 
meant to help you understand how these mathematical models are constructed and 
assessed, based on actual data. Since we are going to be working with power functions, it 
is useful to review some of the basic mathematics of powers.  

First, remember that 10b simply means “multiply 10 times itself b times,” just as b⋅10 
means “add 10 to itself b times.” In this way, powers are to multiplying as multiplying is 
to adding. Just like with multiplication, the same operation applies even when the 
exponent b is negative, or a fraction. Thus, even though it is hard to imagine multiplying 
10 times itself -1/4 times, it can be done. 

Second, recall that just as addition has subtraction and multiplication has division, 
powers also have an inverse function: logarithms. Logarithms are the inverse of powers 
in the sense that Y = 10Z means the same thing as Z = log10Y. Note that the base-10 
logarithm of Y (log10Y) is simply the number of times the base (10) is multiplied by itself 
to yield Y. That is, taking the logarithm of a number yields an exponent. In this exercise, 
we will always work with base-10 logartithms. Base-10 logarithms are useful because 
they describe the order of magnitude of whatever process or phenomena is under 
consideration. 

Finally, let’s review a few of the algebraic “rules” associated with powers and 
logarithms that will come in handy. For powers, recall the following: 

1. A product raised to a power equals the product of each term raised to that 
power: 

€ 

a ⋅ b( )x = ax ⋅ bx  
2. The product of a common base raised to two different powers equals that 

base raised to the sum of those powers: 

€ 

ax ⋅ aw = a x+w( ) 
3. The quotient (or ratio) of a common base raised to two different powers 

equals that base raised to the difference of those powers: 

€ 

ax

aw
= a x−w( )  

4. Negative exponents are reciprocals: 

€ 

a−x =
1
ax

 

Likewise, for logarithms: 
1. The logarithm of a product equals the sum of the logarithms: 

€ 

log(a ⋅ b) = loga + logb 
2. The logarithm of a quotient equals the difference of the logarithms: 

€ 

log a
b
 

 
 
 

 
 = loga − logb 

3. The logarithm of  a power function equals the exponent times the logarithm 
of the base: 

€ 

log(ax ) = x ⋅ loga  



4. The logarithm of the reciprocal of a number is the negative of the logarithm 

of that number: 

€ 

log 1
a
 

 
 
 

 
 = −loga  

 
Note that addition of logarithms is the same as multiplication of the original numbers. 
This is why logarithms were originally invented – to simplify complex multiplicative 
calculations. It also means that logarithms change in multiplicative, rather than additive 
increments, with each integer change, say from 3 to 4, corresponding to another power of 
the logarithmic base, in this case from 1,000 to 10,000. Furthermore, on this logarithmic 
scale (also called a magnitude scale), the step from 1,000 to 10,000 is the same as the 
step from 0.001 to 0.01 or the step from 1050 to 1051. Thus, while ordinary additive 
increments tell us “how much more,” logarithmic increments tell us “how many times 
more.” 

Returning to our allometric equation from above 

€ 

Y = aX b , we can show that taking 
the logarithm of both sides produces the equation for a straight line 

€ 

logY = loga + b ⋅ logX , where a is the intercept (i.e., the value of logX where logY = 0) 
and b is the slope. For the last two steps in the derivation, identify the relevant algebraic 
rule from above. 

€ 

Y = a ⋅ X b

logY = log(a ⋅ X b )
logY = loga + logX b

logY = loga + b ⋅ logX

 

 
Thus, a power function relationship between two variables X and Y means that their 
logarithms are linearly related, with a slope equal to the exponent of the power function. 
Recall that a slope is defined as the “rise over run” or, in this case (since we are working 
with base-10 logarithms), the change in the magnitude of Y for every 10-fold change in X. 
Looking at some graphs of power functions on both standard arithmetic and logarithmic 
scales can help to understand them better. 

 
The left hand graph shows power functions with five different exponents. In all cases, the 
coefficient (a in Y=aXb) is set to one, for simplicity. Note that when the exponent is less 



than one, the line climbs at an ever-decreasing rate, while when the exponent is greater 
than one, it climbs at an ever-increasing rate. In both cases, the curves are not straight 
lines, that is, they are non-linear. Of course, when the exponent is equal to one, we do 
have a straight line, in this case Y=X. Finally, note that when viewed on an arithmetic 
scale, the five lines all appear to converge towards zero. 

Now examine the same five power functions on logarithmic scales (right hand graph), 
on which each equal increment is a power of ten. As we would predict from the 
derivation above, each function is linear, and since the coefficient a is always one, the 
lines only differ in their slopes, and they all cross at the point [1, 1].  The constant slopes 
indicate that for every 10-fold increment in X, Y changes 10b-fold. Viewed on logarithmic 
scales, we can also see that the curves diverge on the small end as well as on the large 
end. These differences are not apparent on the left hand graph because they are 
compressed down into the space between zero and one. 

In a way, these two graphs represent different ways of looking at the world, and some 
of the differences are subtle. For example, the way in which the left-hand graph 
“minimizes” the differences between the power functions near the origin shows that 
arithmetic scales are sensitive to the units of measure: 1 mm is very different from 1 km, 
but the space between zero and one is always the same on the graph. Logarithmic scales, 
on the other hand, present proportional changes that are insensitive to the units of 
measure, because ten times longer is ten times longer, whether in mm or km. This 
difference does not make one quantitative view superior to another, but it does mean that 
one or the other may be more appropriate, depending on the situation. In our case, 
logarithmic scales are the appropriate choice.  
 
Model Details 
Allometric scaling laws are not (generally) derived from basic theoretical considerations, 
like the laws of physics or population genetics, nor are they just arbitrary mathematical 
equations. Instead they are statistical descriptions of empirical data; useful simplifications 
that help us to understand and make predictions about biological phenomena.  



For example, in the 1930s, physiologists Francis Benedict, Max Kleiber and others 
made careful measurements of metabolic rate for mammals ranging from a common 
house mouse to an African elephant. They then plotted the logarithm of the metabolic 
rate as a function of the logarithm of the body weight of the animal, and found a very 
regular relationship between the two.  

 
It is clear from the graph that a line, that is a power function, can be used as a 
mathematical model of the data, a compact representation of the relationship between the 
measured variables, metabolic rate and body mass. There are many possible models (just 
think of all the possible lines you could draw through the data!), so how do we choose the 
“best” one. Of course, “best” depends on what you want to use the model for, but the 
most common method for describing the relationship between two variables Y and X is 
called least-squares regression. 
 



You can think of regression as using X to predict Y, and the least-squares method is just 
a way of minimizing the likely error of the prediction. From each X value, you can use 
the equation for a line to compute a predicted Y value. Then you can compare the 
predicted Y value to the actual Y value. The difference between the two (in units of the 
Y variable), is called the residual. The least-squares regression line is the line that 
minimizes the sum of the squared residuals. Thus, the least-squares regression line, 
minimizes the error you can expect to make in predicting Y, based on knowledge of X. 
The features of the least-squares regression line are summarized below. 
 

 
It is easy to imagine a case where even the “best” line is not a very good description 

of the relationship between the variables, simply because the data themselves do not 
really fall along a tidy, straight line. We can use a value called the coefficient of 
determination (symbolized R2 and said “R squared”) to tell us how well the model “fits” 
the data. The value of R2 varies from zero to one, where zero means that X tells you 
nothing about Y, and one means that all of the Y values fall exactly on the regression line. 
Technically speaking, R2 is the fraction of variation in Y that is explained by variation in 
X. 

The least-squares regression line is relatively straightforward, but tedious, to 
calculate, so we will let the computer do the work for us. Specifically, we will use the 



spreadsheet program Microsoft Excel to compute the least-squares regression line 
relating metabolic rate to body weight in larvae of the tobacco hawkmoth Manduca sexta. 
 
Methodology 
Natural History: Tobacco hornworms (Manduca sexta) are the caterpillar larvae of the 
Tobacco hawkmoth. They are a common agricultural pest of tobacco fields (hence the 
name) and tomato gardens across North America, but in their moth stage, they are also an 
important pollinator of many night-blooming plants. Manduca is a common laboratory 
organism for the study of the nervous and endocrine systems and how they change over 
development. They are easily reared in the laboratory and their large size (for an insect 
larva) makes them relatively easy to work with. 

Here, we are going to use Manduca to study the scaling of metabolism, similar to the 
studies of Benedict and Kleiber described above. The caterpillars are useful in this case 
because they grow from a 1 mg egg to a 10+ g caterpillar (i.e., about four orders of 
magnitude in weight) in about 18 days! Manduca caterpillars develop through five instars 
or stages, between which they molt or shed their outer skin and other tissues. Examine the 
pictures below: 

 
 
 
 

Instar:  First            Second          Third      Fourth     Fifth 
Weight: 7 mg      19.2 mg         84.8 mg        624 mg              1.98 g 
 Weights are averages for well-fed caterpillars in the summer of 2006. Note that 
photographs do not maintain the same scale. 



Measuring Metabolic Rate: We measured metabolic rate by placing individual larvae in a 
chamber and measuring the rate at which they release CO2 into the air (see below).  

 
All we do is take a baseline reading with the chamber empty, then introduce the animal 
into the chamber. Over time, as the animal respires the CO2 concentration rises. Since we 
know the rate at which air is flowing through the chamber, we can use the difference 
between the baseline CO2 reading and that with the animal in the chamber to calculate the 
metabolic rate of the whole animal. 

Physiologists distinguish between whole-organism metabolic rate and so-called 
“specific metabolic rate,” which is the metabolic rate per unit of mass. Thus, metabolic 
rate and specific metabolic rate have different dimensions. For example, the respirometry 
system described above provides measurements of metabolic rate in units of micro-mols 
of CO2 per minute (µmol CO2 min-1). Mols (or moles) are just a molecule-counting unit 
(1 mol = 6.02X1023 molecules), so metabolic rate here is just the rate of carbon dioxide 
release. The specific metabolic rate can then be found by dividing an animal’s metabolic 
rate by its mass, giving units, in the case of our Manduca, of micro-mols of CO2 per 
minute per gram (µmol CO2 min-1 g-1). Specific metabolic rate is useful because, by 
“standardizing” the measurement on a gram-for-gram basis, it tells you how fast an 
organism’s cells are actually working. Small organisms live at a faster pace than large 
organisms in the sense that their specific metabolic rate, and thus the rate at which each 
of their cells work, is higher. At the whole-organism level, even though their cells are 
working more slowly, larger organisms tend to have a higher metabolic rate simply 
because they are larger, and thus have many more cells. 
By measuring multiple larvae every day as they grow and develop, we can collect a lot of 
data in a short amount of time. Our job here is to analyze data from the summer of 2006, 
and draw some inferences about metabolic scaling in Manduca, and maybe even more 
generally. As described above, you will use log-log scatterplots and least-squares 
regression to estimate the parameters (i.e., the coefficient and scaling exponent) of the 

Schematic showing Manduca 
respirometry apparatus. Solid 
lines show the path of the 
airstream, while dashed lines 
show data flow. 



power function. You will use least-squares regression to estimate the scaling relationships 
from log-log scatterplots of the data.  
 
Model Assessment 
Data in the Excel file are in three columns. Instar is the developmental stage of the 
caterpillar, Body Size is the weight of the animal (in grams) at the time of measurement, 
and Metabolic Rate is the measured in micromols of COs per minute.  

The first step is to use the spreadsheet to calculate the logarithm of each body size 
and metabolic rate data, as demonstrated in class. Make a plot of the log-transformed 
whole-organism metabolic rate data, and a separate plot of the untransformed data. 
Compare the two plots. Describe how the two graphical representations provide different 
information about how metabolic rate varies with body weight. Now, use the “Trend 
Line” utility (right click on a data point for the menu) to fit the least squares regression 
line to the log-transformed data. Make sure to select the options for displaying the 
equation and the R2 value on the graph. Use the graph to answer the following questions. 
 
What is the least-squares regression equation? 
 
Using the rules for logarithms and powers described above rewrite the regression 
equation as a power law. (Remember that 

€ 

Y = aX b  is the same as 

€ 

logY = loga + blogX and 

€ 

10loga = a .) 
 
What does this equation tell you about how metabolic rate changes as Manduca larvae 
get larger?  
 
How much of the variation in metabolic rate is explained by body size? 
 
Next, analyze the metabolic rate data for each instar separately in order to see whether 
metabolic scaling changes over the life of the larvae. Plot the data for each instar as a 
separate series on a single scatterplot, then perform the least-squares regression analysis 
on each instar. For each instar, record the least-squares regression equation and R2value. 
 
Describe how the scaling relationships change as the larvae develop from first through 
fifth instars. 
 
Write a few sentences summarizing the patterns of metabolic scaling in Manduca sexta in 
relation to the patterns we have observed for other organisms. 
 
Finally, use the spreadsheet to calculate specific metabolic rate, then calculate its 
logarithm. Make a scatterplot of the log(specific metabolic rate) as a function of log(body 
weight) (no need to use separate instars here) and perform another least-squares 
regression analysis. 
 
State and interpret (as in 1, 3, and 4 above) the regression equation and R2 value.  
 
 



Conceptual Questions 
 
• Compare the regression models for whole-organism and specific metabolic rate. 

In developing Manduca sexta caterpillars, does body size tell you more about one 
or the other? How do you know? 

 
• On your original graph of metabolic rate as a function of body size, identify the 

two data points with the largest positive and negative residuals. Like all 
instruments, the respirometry equipment used to make the measurements of 
metabolic rate has limited accuracy, especially when the changes in CO2 
concentration are relatively small. How might this source of measurement error 
be reflected in the observed pattern of residual variation? 

 
• Based on the mammal data shown in the figure above, Francis Benedict (who 

collected most of the data) remarked “It is obvious that this apparent straight-line 
relationship is of no physiological significance… It seems illogical to make use of 
complicated mathematics in the attempt to unravel the end results of the pooled 
activities of millions of cells.” Max Kleiber, the other physiologist most closely 
associated with this pattern, disagreed strongly with Benedict’s interpretation. 
Respond to Benedict’s statement, taking Kleiber’s point of view, and recalling 
McArthur’s assertion that to do science, “is to search for repeated patterns, not 
simply to accumulate facts.” 

 
Problems and Projects 
 
Max Rubner, Max Kleiber, and Manduca: By the late 19th century, it was clear to 
physiologists that whole-organism metabolic rate changed as a power function of body 
mass with an exponent different from one; that is, the relationship was non-linear. One of 
the foremost physiologists of the time, Max Rubner, proposed that the exponent should 
be around 2/3, based on the theoretical geometric relationship between the mass of an 
animal and its ratio of surface area to volume. Careful work with dogs of various sizes 
seemed to confirm his result.  
The careful analyses by Max Kleiber of the data collected by Benedict indicated that 
across all mammals, the exponent was substantially higher than 2/3, somewhere very 
close to 3/4. While there was no theoretical basis for the difference at the time, a number 
of theories have been put forward since then, and this area of biological science remains 
an exciting field full of open questions.  
The goal of this project is to compare the observed exponents to Rubner’s “Surface Law” 
(where the exponent is 2/3) and to “Kleiber’s Rule” (where the exponent is 3/4). 
 
What scaling relationships are expected between body weight (W, the X variable) and 
whole-organism metabolic rate (B, the Y variable) based on the Surface Law and 
Kleiber’s Rule? 
 
 Surface Law:_______________  Kleiber’s Rule:_______________ 
 



What corresponding relationships are expected between body weight (W, the X variable) 
and mass-specific metabolic rate (B/W, the Y variable) based on the Surface Law and 
Kleiber’s Rule? 
 
 Surface Law:_______________  Kleiber’s Rule:_______________ 
 
Based on your results, is either Rubner’s Surface Law or Kleiber’s Rule supported in the 
metabolic scaling of Manduca sexta? Explain. 
 
Empirical Data and Solutions 
 
Available from the author: kerkhoffa@kenyon.edu 
 
Suggestions to Instructors 
 

Statistical Extensions: The elementary level at which least-squares regression is 
handled in this module leaves ample room for more technically advanced applications. 
To list only a few: 

1. F-statistics and inference techniques could be used to assess the significance of 
the regression model parameters. 

2. 95% confidence intervals on the regression slope could be used to compare 
empirical scaling exponents to expectations, e.g., 2/3, 3/4. 

3. Analysis of covariance (ANCOVA) could be used to assess differences in slope 
and intercept between instars. 

4. Alternative regression models (e.g., reduced or standardized major axis 
regression) could be used to estimate slope values. 

 
Biological Extensions: The same analytical techniques can be applied to a variety of 

problems in biological scaling, and both the primary literature and the internet provide a 
wealth of available data and problems for student analysis.  

For example, students could compare the Manduca data analyzed here directly to the 
available data for mammals of all sizes compiled from the literature. In this case, the 
metabolic rate data will need to be transformed to watts to have a common basis for 
measurement. Since watts are J/s, we first have to divide by 60 to get micromoles of COs 
per second. We can then use a standard “respiratory quotient” of 0.82 mol CO2 per mol 
O2 and the corresponding energetic yield of respiration (20.2 J per mol O2) to find 
Manduca metabolic rate in watts. These data can then be combined with the available 
mammal data to compare metabolic scaling in a single species of caterpillar to that of the 
entire class mammalia. The comparison can either be made qualitatively, as in the 
Projects and Problems section above, or more objectively using more advanced 
statistical methods like ANCOVA.  

 
Please contact the module author for data and other suggestions. 
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Glossary of Terms 
 
• Allometry: The study of size-related changes in form and function in living things, 

focused on the development and explanation for quantitative descriptions of patterns 
across a wide array of sizes. 

• Manduca sexta: Tobacco hornworms/hawkmoths. 
• Metabolism: The sum of biochemical processes carried out in the cells of living 

things by which energy is provided and materials assimilated for all vital processes 
and activities. May be accounted for on a whole-organism or mass-specific basis. 

• Order of magnitude: Power of ten. 
• Respirometry: The measurement of respiration, and thus metabolism, via the 

measurement of oxygen or carbon dioxide exchange between organism and 
environment. 
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