The Puzzling Origins of AIDS

Although no one explanation has been universally accepted, four rival theories provide some important lessons

Jim Moore

Shortly after the 1983 discovery of the human immunodeficiency virus (HIV), the pathogen responsible for AIDS, investigators became aware of a strangely similar immune deficiency disease afflicting Asian monkeys (macaques) held in captivity in various U.S. research labs. Soon, virologists identified the culprit: a simian immunodeficiency virus (SIV) that is found naturally in a West African monkey species, the sooty mangabey (Cercocebus atys), but is harmless to that host. This virus, denoted SIVsm, is genetically similar to a weakly contagious form of the AIDS virus that is largely restricted to parts of West Africa, HIV-2, and thus is considered its likely precursor. More recent work has shown that the closest relative of the primary human immunodeficiency virus (HIV-1) is another simian immunodeficiency virus, one carried by chimpanzees (SIVcpz).

After comparing the SIVs in chimpanzees and sooty mangabeys with HIV-1 and HIV-2 strains, investigators concluded that there must have been multiple transmission “events” from simians to humans—at least seven for HIV-2 (some of which are known from only a single person who lives near mangabeys carrying a uniquely similar SIV) and three for HIV-1, the virus now infecting some 40 million people worldwide.

How did SIVcpz and SIVsm cross over into humans and become pathogenic? Given the lack of historical references to AIDS-like disease in Africa prior to the mid-20th century, as well as its absence previously in the New World (which imported some 10 million African slaves during the 16th through 19th centuries), that transfer appears to have happened relatively recently—exactly when is a point of considerable debate.

And why did two distinct simian viruses with which humans have apparently coexisted for centuries, or even millennia, suddenly pass into humans multiple times within a few decades?

The answers to these questions have been slow in coming, despite the considerable efforts of molecular biologists to understand the nature and evolution of primate immunodeficiency viruses. I am not one of those molecular biologists; rather, I became a player in the field of AIDS-origin research through my interest in chimpanzee socioecology. Although I am partial to a theory I helped to fashion for why AIDS emerged when it did, with time it might become clear that a competing idea better accounts for genesis of the epidemic. Or perhaps the answer will prove to lie with some complex combination of factors that no single explanation presently encompasses. Whatever the case, the solution almost certainly will come from one or more of four competing theories.

Theory 1: Tainted Polio Vaccine

The first theory is the most controversial. In a 1992 article in the magazine Rolling Stone, journalist Tom Curtis suggested that HIV could have resulted from the use in Africa of an experimental oral polio vaccine (OPV), one contaminated by a then-unknown SIV carried most probably (Curtis supposed) by African green monkeys. Green-monkey kidney cells were widely used as a substrate to grow viruses for research and vaccine production. And one of the first major trials of an experimental oral polio virus vaccine took place from 1957 to 1960 in what are now the Democratic Republic of the Congo, Burundi and Rwanda, seemingly the “hearth” of the global AIDS epidemic. When interviewed by Curtis, Hilary Koprowski, the polio-vaccine pioneer who mounted that massive campaign, could not recall or find documentary evidence as to whether his group had used kidney cells from green monkeys or Asian macaques (which do not naturally carry an SIV). If culture media contained SIV (a possibility, given that the techniques available during that era were unable...
Multiple localized strains of HIV have now been discovered, and mass vaccination appears unlikely to account for all of them. But the early distribution of the major pandemic strain, HIV-1 group M (for “main”), seems to fit reasonably well with the location of Koprowski’s campaigns, and the OPV theory now is applied primarily to this strain.

Contamination of OPV is the only one of the four current theories that is readily falsifiable. Finding the HIV-1 group M virus in a tissue sample that predated the suspect vaccine would eliminate this possibility. So far that has not happened. Still, many investigators give the theory little weight for other reasons, which has led to the widespread belief that the theory has been definitively disproved. In 2001, for example, Science magazine published a piece titled “Disputed AIDS Theory Dies its Final Death,” and Nature ran one under the heading “Polio Vaccines Exonerated.” Earlier this year Nature also published “Origin of AIDS: Contaminated Polio Vaccine Theory Refuted”—a surprising title given that this theory ostensibly died three years ago.

The recent findings of various molecular biologists have indeed failed to provide support for the OPV theory. For example, in 2000 a few existing samples of the vaccine from Koprowski’s home institution (the Wistar Institute in Philadelphia) were tested and found negative for both chimpanzee DNA and SIV. However, this result did not rule out the possibility, previously suggested by Hooper, that local amplification of the live-virus vaccine in Africa (to create more doses) could have introduced the SIV. The key issue is thus whether chimpanzee kidneys were used as a culture medium at any stage of Koprowski’s vaccine program. There is eyewitness testimony on both sides of this question, and failure to find SIVcpz in a handful of samples of the live vaccine strain of the type used in Africa does not prove the virus was absent in (putative) locally produced batches.

A second reason to question the OPV theory also came to light in 2000, with a report in Science by Bette T. Korber (of Los Alamos National Laboratory) and colleagues. They used molecular differences among HIV-1 group M subtypes to estimate the date of their last common ancestor. The conclusion: 1931 (with 95 percent confidence limits giving the range 1915 to 1941), preceding OPV administration by decades. However, the calculation of such common-ancestor dates can be thrown off by genetic recombination among subtypes (“viral sex”), which can make such dates come out too early, and there is increasing evidence that such recombination may be common with HIV. So maybe this date is not right. On the other hand, independent analyses using different methods have supported the date, and an analogous study of HIV-2 came up with an origin for the main group between 1940 and 1945.

Another objection to the OPV theory concerns the subspecies of chimpanzee kept near Kisangani (formerly Stanleyville) at a facility called Camp Lindi, which Koprowski and colleagues maintain was used for safety-testing their vaccine, but which Hooper suspects was the source of chimpanzee tissues used to produce vaccine locally. The SIVcpz strain that is most similar to HIV-1 has so far only been identified in a subspecies of chimpanzee native to west-central Africa, Pan troglodytes troglodytes. A second, less similar strain has been identified only in Pan troglodytes schweinfurthii, the subspecies found in east-central Africa—where Camp Lindi was located. The nearest known populations of P. t. troglodytes are more than 500 kilometers from Koprowski’s chimp colony. So, this argument goes, the locally obtained captive chimps would not

Figure 2. One controversial theory posits that the transfer of the chimpanzee immunodeficiency virus to human beings took place between 1957 and 1960 in the course of an oral polio-vaccination campaign carried out by Ghislain Courtois, Hilary Koprowski and their colleagues in what are now the Democratic Republic of the Congo, Burundi and Rwanda. This sign from the chimpanzee colony maintained in connection with that campaign reads, “Polio mission of Courtois-Koprowski, experimentation center, entrance forbidden.” (Photograph by Gilbert Rollais, courtesy of Edward Hooper.)
Figure 3. “CHAT” oral polio vaccine was fed to approximately one million people at various sites (red dots and pink zone) between 1957 and 1960. The degree of correspondence between these locales and early evidence of HIV-1 infection in Africa through 1981 (squares) is striking. The evidence comes either from patients who showed symptoms of AIDS and who later proved to be infected with HIV-1, or from HIV-positive blood samples taken at the time. (Note that two confirmed AIDS cases are not shown: a patient who acquired the virus somewhere in Tanzania before 1981, and one who acquired a form of the virus that is genetically distinct from the main form in either Cameroon or Kenya before 1967.) A comparison of CHAT sites and early AIDS cases that were never serologically tested (not shown) gives a similarly high degree of correspondence. Critics of the theory that this vaccination program ignited the epidemic note that the correlation between vaccination sites and early evidence of AIDS may just reflect the distribution of population centers and of medical facilities. They also point out that the SIVcpz carried by Pan troglodytes schweinfurthii (green)—the subspecies of chimpanzee found near Stanleyville (Kisangani), where those involved with the CHAT campaign maintained a colony of chimpanzees—is less closely related to HIV-1 than is the SIVcpz carried by Pan troglodytes troglodytes, which lives to the west (purple). The first criticism requires a careful statistical analysis to evaluate. The second ignores the fact that some chimpanzees might have been obtained for the colony from hunters working lower on the Congo River, which supported considerable steamer traffic at the time. (Data on CHAT sites and early HIV occurrences are from Hooper 2000. Subspecies ranges derived from Worobey et al. 2004.)

have been carrying the SIVcpz strain thought to have given rise to HIV-1.

One difficulty with this argument is that distance is not always measured in kilometers, particularly in Central Africa: Kisangani lies at the upstream end of the navigable portion of the Congo River, which borders the range of Pan troglodytes troglodytes for hundreds of kilometers, and river trade has been substantial since the colonial scramble for Africa in the late 19th century. If it became known that Americans were paying good money for young apes in Kisangani, it would be almost surprising if some hunters had not made the trip upriver. Another problem is the difficulty of proving the absence of something based on only a few samples, which requires some significant assumptions about the epidemiology of SIVcpz in the wild.

In short, although the majority of the biological evidence published in the last few years suggests that the OPV hypothesis is wrong, headlines reporting the death of this theory remain premature.

Theory 2: Cut Hunter

The main competing theory posits that SIV is occasionally transmitted to hunters via blood-to-blood contact with an infected primate. According to this view, the virus is usually cleared in its human host, but at least several times during the 20th century it survived and became established as HIV. It is not hard to imagine hunters suffering cuts or being injured by a wounded mangabey or chimpanzee, and some form of natural transfer between species presumably accounts for the widespread distribution of SIVs in African primates. Hence, one has the “cut hunter” or “natural transfer” theory, which is probably the most accepted idea today. According to that view, the timing of the widespread emergences of HIV-1 and HIV-2 in the middle part of the 20th century is attributed to urbanization and regional commerce, which create conditions ideal for spreading a sexually transmitted disease.

Unlike the case with OPV, there is no easy way to disprove this theory—even a smoking gun linking oral polio vaccines to HIV-1 group M would leave multiple other HIV strains unaccounted for, and “modernization” is a diffuse enough explanation to cover
any of them. Nor is the cut-hunter theory particularly limited in time. After all, many Africans began moving to colonial capitals and ports in the 19th century. A hypothesis that does not account for the timing of the AIDS epidemic and that is not falsifiable is of limited use. Still, the thinness of the theory does not make it wrong.

Theory 3: Contaminated Needles

The next proposal, a refinement of the cut-hunter theory, comes from Preston A. Marx, a virologist who holds positions at Tulane University and at the Aaron Diamond AIDS Research Center. In 1995 he noted (to Hooper) that a big change in medical practice took place in the 1950s with the worldwide introduction of disposable plastic syringes, making guaranteed sterile use possible and dropping the cost of syringe production by almost two orders of magnitude. The result was that unsterilized syringes were used again and again, spreading viruses, including those that eventually became HIV.

Marx suggests that people’s immune systems would normally be able to overcome an SIV they acquired, say while butchering a monkey, within a week or two of infection. He further posits that the transition from SIV to HIV demands being a function of viral population size. Thus, Marx contends, some way must be found to permit the SIV to remain at high levels in people for long enough that such spontaneous mutations might take place. He suggests that the required mechanism is “serial passaging” of virus through unsterile needles. That is, a cut hunter might get an injection while he is still harboring large numbers of viral particles in his bloodstream; that same needle would then be used to infect another person, who might soon receive a second injection, and so forth. High viral population levels can thus be maintained in a series of different people getting shots. With each transfer via contaminated needle, the virus finds itself in a fresh host, with an opportunity to proliferate before the infected person can mount an immune response. Chance mutations can thus accumulate, and eventually the SIV adapts, becoming HIV.

Theory 4: Heart of Darkness

Together with two undergraduate students, I am responsible for another variant to the cut-hunter theory, so perhaps I should explain how I became engaged in this field of inquiry. In late 1998 I became involved in an

Figure 4. SIV may have crossed the species barrier to humans in the course of someone killing a chimpanzee or monkey for meat. At left, Efe Pygmy hunters of the Ituri Forest, Democratic Republic of the Congo, butcher a mangabey killed with bow and arrow. At right, a hunter from Sierra Leone uses a more modern weapon (a shotgun) to kill mangabeys. (Photograph at left by Heidi Verhoef, courtesy of the Bushmeat Crisis Task Force, www.bushmeat.org. Photograph at right courtesy of Glyn Davies, Zoological Society of London.)

Figure 5. Because the cut-hunter theory alone fails to explain the timing of the AIDS epidemic, investigators have looked for other factors that might hold the key. One is the widespread distribution of disposable syringes, which began in the 1950s. Although inexpensive, these devices proved too precious to be thrown out in many poor parts of the world. And unlike the metal or glass units that they replaced, plastic syringes cannot be sterilized by boiling them (they melt). The result is that unsterilized syringes were often reused, spreading disease. Even now, such problems are common in the developing world, as can be seen in the proportion of health centers in selected African countries where syringes or needles are reused without sterilization. (Data from Dicko et al. 2000.)
e-mail discussion about the conservation implications of the identification of central African chimpanzees as the source of HIV-1, a result that Beatrice H. Hahn of the University of Alabama at Birmingham and her colleagues had just published. At about the same time, a colleague urged me to read King Leopold’s Ghost, Adam Hochschild’s history of the Belgian Congo, and I was independently contacted by two students, Amit Chitnis and Diana Rawls, who were interested in doing something involving the intersection of biological anthropology and medicine. Then came the catalyst: an article in Discover magazine that mentioned the idea that the origin of AIDS might have had something to do with the chaos that followed colonial withdrawal from central Africa. The notion was that the colonial authorities had kept things under control, but when they left, “there was a free-for-all” that provided the conditions for the establishment of a new disease.

King Leopold’s Ghost had more impact on me than any other book I have read. I had vaguely heard that Belgian rule was harsh, but I had not realized that more Africans probably died as a result of colonial practices in French Equatorial Africa and neighboring Belgian Congo between 1880 and the onset of World War II than had been taken from Africa as slaves during the preceding 400 years. “Probably,” because no record was kept of the dead. The first censuses, taken in the 1920s, estimated that the population of the two colonies was then about 15 million. Census-takers recorded that wherever they asked, local people (colonial and native) reported that about twice as many had lived there two or three decades before, indicating that some 15 million had died. Losing 50 percent of the population exceeds even the 35-percent fatality rate of the Black Death in Europe.

It seems Joseph Conrad’s Heart of Darkness was as much fact as fiction, and the horror described in that famous novel reflected official policies in the Congo as much as individual insanity. What appeared to many as colonial “control” of the region in the late 19th and early 20th centuries brought chaos to the lives of the Africans who lived and died under it. Chitnis, Rawls and I set out to see what disease-promoting factors might have existed prior to the withdrawal of colonial powers around 1960.

Candidates were not difficult to find, at least during the years prior to World War I. Forced labor camps of thousands had poor sanitation, poor diet and exhausting labor demands. It is hard to imagine better conditions for the establishment of an immune-deficiency disease. Where imagination fails, let history serve. To care for the health of the laborers, well-meaning but undersupplied doctors routinely inoculated workers against smallpox and dysentery, and they treated sleeping sickness with serial injections. The problem is, the multiple injections given to arriving gangs of tens or hundreds were administered with only a handful of syringes. The importance of sterile technique was known but not regularly practiced: Transfer of pathogens would have been inevitable. And to appease the laborers, in some of the camps sex workers were officially encouraged.

And that was just the situation in the camps. Major efforts were made to eradicate smallpox and sleeping sickness

Figure 6. Another modification of the cut-hunter theory suggests that the widespread brutalization of natives of the Congo basin during the colonial era promoted both the adaptation of SIVcpz to humans (its transformation to HIV-1) and the initial spread of the virus. In particular, people living in this region suffered enormously, many being forced to extract ivory and rubber from the jungle. King Leopold II of Belgium came under intense international scrutiny as a result of his harsh treatment of those living in the Congo Free State. This drawing, which appeared in the magazine Punch in 1906, shows a native man ensnared by a serpent with the head of King Leopold.
were obtained in conjunction with the polio-ficiency viruses in a region where chimpanzees
in the field during his final expedition.

Jeffrey B. Joy

Jeffrey B. Joy was an American scientist known for his work on poliomyelitis and vaccine development. He was involved in the development of the Sabin polio vaccine and contributed to the eradication of polio in many parts of the world. His research and work have had a significant impact on global health and the reduction of infectious diseases. His contributions to the field of virology and epidemiology are recognized internationally.

1890: Joseph Conrad works on the Congo River, an experience that later inspired his novel Heart of Darkness

1908: Leopold's Congo territory becomes a Belgian colony

1920s: a census reveals that 10 million have died in the Belgian Congo alone

1957: start of oral polio-vaccination campaign in Congo, Burundi, Rwanda

1959: first confirmed HIV infection (Leopoldville, Congo)

1982: the name “AIDS” is given to this newly emergent disease

1983: HIV discovered as cause of AIDS

1990–2000: number of people living with HIV (millions)

Figure 7. Different theories point to different events as crucial to the genesis of the AIDS epidemic. The colonial-disruptions theory emphasizes goings-on in the early part of the 20th century, whereas the contaminated-needle theory places the spark after 1950. The controversial theory attributing the epidemic to an experimental polio-vaccination campaign carried out between 1957 and 1960 falls closest in time to the first confirmed HIV-positive blood sample, taken in 1959 from someone living in Leopoldville (Kinshasa). The number of people infected with HIV has since risen to almost 40 million. (Data on rise in HIV infections from UNAIDS.)
on urbanization (or sets a much lower threshold for the critical level of city life) could also explain the genesis and initial spread of HIV during this period.

Neither of these scenarios neatly accounts for the decades between the postulated origin of HIV in the early part of the 20th century and the widespread emergence of AIDS in Africa, which did not take place until the early 1980s. But maybe that long delay is only an artifact of our perceptions: Starting with a single case and assuming a doubling in frequency every few years, one would need decades to pass for the prevalence to build appreciably; would colonial doctors have noticed an initially rare immune disease? Nor do these theories readily explain details of the spatial pattern in the early cases of HIV infection and AIDS, which indeed show a suggestive overlap with the sites of oral polio vaccination. But is that correspondence just a function of the distribution of population and doctors? As with all of the current ideas, one can suggest various explanations to account for intriguing observations or troubling discrepancies. For the moment, the fit between theory and observation remains loose enough that no one view has proved absolutely compelling.

Battling Theories

Arguments over rival theories of the origin of AIDS have raged viciously at times—for far beyond the norms of most scientific debates. Indeed, both sides in the OPV controversy have in the recent scientific literature gone so far as to accuse their opponents of lying and manipulating evidence. I only became aware of the explosive nature of the debate after my students and I unwittingly wandered into this minefield.

Some of the participants in this controversy appear unwilling even to entertain the possibility of being wrong. Given the precarious status of each of the current theories, it seems more reasonable to try to keep an open mind until better evidence emerges and, in the meantime, to consider the literature on each of these origin stories as representing a highly refined simulation scenario. Insofar as there is any material benefit to come from understanding the origin of HIV in terms of cautionary tales, each model can and should be considered plausible—and worrisome. After all, unsterile needles do transmit diseases, contaminated polio vaccine did spread a simian virus (one called SV40) to millions of people, doctors do sometimes conduct risky research, colonial policies did have major health consequences, and contact with wild animals can introduce pathogens into humans.

An obvious general lesson can be drawn from all four theories: For some very puzzling reason, the origin of HIV was not fundamentally natural, given that humans apparently failed to acquire an immunodeficiency virus from simians during thousands of years of exposure. Instead, the emergence of HIV involved social change in one form or another: the abuses carried out at the hand of an invading foreign power; abrupt urbanization overwhelming the ability of medical and political authorities to manage the process; the undersupervised transfer of medical technology and half-measures in development programs; doctors taking liberties in distributing medicines without adequate precautions. It is worth noting that three of the four theories postulate an origin for AIDS that involves the inadvertent results of medical efforts, with what were then state-of-the-art health programs and technologies carrying with them unforeseen dangers.

Whether understanding the origin of HIV and AIDS is useful for evaluating risks associated with present-day concerns (say, the consumption of wildlife that might be the natural reservoir for emerging diseases like SARS, or evaluating the likelihood that the transplantation of animal organs into people will unleash a dangerous new virus) is a matter of opinion. My own view is that a firmer grasp of what happened in the past—and what might easily have happened had circumstances been slightly different—helps society to understand these dangers and to minimize the risk of sparking the next global scourge.

Bibliography

