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The equilibrium model of island biogeography explained variation in
number of species on islands by the influences of isolation and area
on rates of immigration and extinction.
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INSULAR BIOGEOGRAPHY

Jamres H. Brown*

Department of Zoology, University of California, Los Angeles, California 90024
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The Species-Area Relationship

Larger “Islands” contain more species
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Works on real islands too! - Caribbean Bats
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Reduced islands lost species over time
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Back to the Mountains

How will the fauna respond
to climate change?
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Vegetation zones change with elevation due to climate

Cooler
A -rare
B - patchy
C - connected

Warmer

B - rare

C - patchy
(new) D - connected

Where’s A?

Predicting Responses to Climate Change

Hypothesis: Diversity of mountain
islands will shift along Species-Area
Relationship
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Diversity gradients and climate

ENERGY AND LARGE-SCALE PATTERNS OF ANIMAL- AND PLANT-
SPECIES RICHNESS
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The valué of "the world’s tecosystem
services and natural capital

Robert Costanza*t, Ralph d’Arge:, Rudolf de Groots, Stephen Farberl, Monica Grassot, Bruce Hannon,
Karin Limburg#”, Shahid Naeem**, Robert V. O’Neillif, Jose Paruelo:i, Robert G. Raskinss, Paul Suttonll|
& Marjan van den Belt9¢

The services of ecological systems and the natural capital stocks that produce them are critical to the functioning of the
Earth’s life-support system. They contribute to human welfare, both directly and indirectly, and therefore represent
part of the total economic value of the planet. We have estimated the current economic value of 17 ecosystem services
for 16 biomes, based on published studies and a few original calculations. For the entire biosphere, the value (most of
which is outside the market) is estimated to be in the range of US$16-54 trillion (10'?) per year, with an average of
US$33 trillion per year. Because of the nature of the uncertainties, this must be considered a minimum estimate. Global
gross national product total is around US$ 18 trillion per year.
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The value of the world’s ecosystem

services and natural capital

Robert Costanza*t, Ralph d’Arge:, Rudolf de Groots, Stephen Farberl, Monica Grassot, Bruce Hannon,
Karin Limburg#”, Shahid Naeem**, Robert V. O’Neillif, Jose Paruelo:i, Robert G. Raskinss, Paul Suttonll|

& Marjan van den Belt9¢

Ecosystem services ~$33 trillion (10'2)
Global GNP ~$18 trillion (10'2)

The services of ecological systems and the natural capital stocks that produce them are critical to the functioning of the
Earth’s life-support system. They contribute to human welfare, both directly and indirectly, and therefore represent
part of the total economic value of the planet We have ostlmated the curront economic value of 17 ecosystem services
for 16 biomes, based on published s d a few origin 2 ; e e

US$33 trillion per year. Because
gross national product total is around US$18 trllllon per year.

e biosphere, the value (most of

per year, with an average of
ed a minimum estimate. Global

Estimated value of ecosystem services is of the same
magnitude as GLOBAL gross national product.

This was 1997...
Cost of the recent financial crisis was ~$5 trillion
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The value of thewld’s ecosystem
services and natural capital

Robert Costanza*i, Ralph d’Argei, Rudolf de Groots, Stephen Farberl, Monica Grassof, Bruce Hannon¢,
Karin Limburg+“, Shahid Naeem**, Robert V. O’Neillii, Jose Paruelo:i, Robert G. Raskinss, Paul Suttonll
& Marjan van den Belt!¢

Figure 2 Global map of the value of
ecosystem services. See Supplemen-
tary Information and Table 2 for details
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Human Domination of Earth’s Ecosystems

Peter M. Vitousek, Harold A. Mooney, Jane Lubchenco, Jerry M. Melillo

Human alteration of Earth is substantial and growing. Between one-third and one-half
of the land surface has been transformed by human action; the carbon dioxide con-
centration in the atmosphere has increased by nearly 30 percent since the beginning of
the Industrial Revolution; more atmospheric nitrogen is fixed by humanity than by all
natural terrestrial sources combined; more than half of all accessible surface fresh water
is put to use by humanity; and about one-quarter of the bird species on Earth have been
driven to extinction. By these and other standards, it is clear that we live on a human-
dominated planet.



Fig. 1. A conceptual
model illustrating hu-
manity’s direct and indi-
rect effects on the Earth

system [modified from

(56)).
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Human Domination of Earth’s Ecosystems

Peter M. Vitousek, Harold A. Mooney, Jane Lubchenco, Jerry M. Melillo

Fig. 2. Human domi-
nance or alteration of
several major compo-
nents of the Earth sys-
tem, expressed as (from
left to right) percentage
of the land surface trans-
formed (5); percentage
of the current atmo-
spheric CO, concentra-
tion that results from hu-
man action (77); per-
centage of accessible

Percentage change
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surface fresh water used (20); percentage of terrestrial N fixation that is human-caused (28); percentage
of plant species in Canada that humanity has introduced from elsewhere (48); percentage of bird
species on Earth that have become extinct in the past two millennia, almost all of them as a conse-
quence of human activity (42); and percentage of major marine fisheries that are fully exploited,
overexploited, or depleted (74).
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Time trend of humanity’s ecological demand. This graph shows human demand over the last 40 years as compared with the earth’s ecological capacity

for each year. One vertical unit in the graph corresponds to the entire regenerative capacity of the earth in a given year. Human demand exceeds nature’s total
supply from the 1980s onwards, overshooting itby 20% in 1999. If 12% of the bioproductive area were set aside to protect other species, the demand line crosses
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supply from the 1980s onwards, overshooting itby 20% in 1999. If 12% of the bioproductive area were set aside to protect other species, the demand line crosses

the supply line in the early 1970s rather than the 1980s.
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it the dawning of a new epoch?

GEOLOGIC TIME SCALE

Anthropocene?

(since 1784)
(Based on data from Gradstein and Ogg, 1996 (Phanerozoic); and Harland et al., 1990) 10

copyright A. MacRae 1998
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