Principle of allocation

Soma
- assimilation
- growth
- maintenance
- excretion
- reproduction

Life history - how allocation changes over the lifetime of an organism.

young lifetime old
Principle of allocation leads to trade-offs

Example: Size vs. number of offspring

Size-number trade-offs

Darters that produce larger eggs lay fewer.

Plants that produce larger seeds produce fewer.
A dazzling variety of life-histories

Fishes with higher mortality rates allocate a greater proportion of their energy to reproduction.
Grime’s Triangle

What characteristics would be associated with each strategy?

Winemiller and Rose’s classification space

What are the trade-offs involved?
Competition

G.F. Gause

“Competitive exclusion principle”

No two species sharing identical niches can coexist indefinitely…
Tribolium flour beetles

Park’s flour beetles

Growing separately

Warm and humid

Growing together

Cool and dry

When grown separately at 34°C and 70% relative humidity, populations of *T. confusum* and *T. castaneum* both did well.

When grown together at 34°C and 70% relative humidity, *T. confusum* populations died off after 430 days, while *T. castaneum* persisted.

When grown separately at 24°C and 30% relative humidity, *T. confusum* populations did well, while *T. castaneum* populations died off in about 500 days.

When grown together at 24°C and 30% relative humidity, *T. castaneum* populations died off in less than 400 days, while *T. confusum* persisted.
Temperature

24 29 34

Relative humidity

30 70

T. castaneum

indeterminate

T. confusum

Theory of competition

Alfred Lotka

Vito Volterra
ZNGIs in the Lotka-Volterra models

Warbler Feeding Niches limit competition

Robert MacArthur