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Stereoselective Bimolecular Phenoxy Radical
Coupling by an Auxiliary (Dirigent) Protein

Without an Active Center
Laurence B. Davin, Huai-Bin Wang, Anastasia L. Crowell,

Diana L. Bedgar, Diane M. Martin, Simo Sarkanen,
Norman G. Lewis*

The regio- and stereospecificity of bimolecular phenoxy radical coupling reactions, of
especial importance in lignin and lignan biosynthesis, are clearly controlled in some
manner in vivo; yet in vitro coupling by oxidases, such as laccases, only produce racemic
products. In other words, laccases, peroxidases, and comparable oxidases are unable
to control regio- or stereospecificity by themselves and thus someother agentmust exist.
A 78-kilodalton protein has been isolated that, in the presence of an oxidase or one
electron oxidant, effects stereoselective bimolecular phenoxy radical coupling in vitro.
Itself lacking a catalytically active (oxidative) center, its mechanism of action is presumed
to involve capture of E-coniferyl alcohol-derived free-radical intermediates, with con-
sequent stereoselective coupling to give (1)-pinoresinol.

Bimolecular phenoxy radical coupling is in-
volved in numerous biological processes, in-
cluding lignin (1), lignan (2, 3), and suberin
(4) biosynthesis in vascular plants, fruiting
body development in fungi (5), and insect
cuticle melanization and sclerotization (6),
as well as in the formation of aphid pigments
(7) and algal cell wall polymers (8).

In contrast to the marked specificity ob-
served for these varied biological systems,
all previously described chemical (9) and
enzymatic (10) bimolecular phenoxy radi-
cal coupling reactions in vitro have lacked
strict regio- and stereospecific control. That
is, if chiral centers are introduced during
coupling in vitro, the products are racemic,
and different regiochemistries can result if
more than one potential coupling site is
present. Thus, the ability to generate a par-
ticular enantiomeric form or a specific cou-
pling product in vitro is not under explicit
control. Nonetheless, bimolecular phenoxy
radical coupling in vivo can lead to well-
defined biopolymers and oligomers, such as
melanins, lignins, and lignans, although the
mechanism has been unclear. The matter is
further complicated because a large number
of oxidative enzymes with broad substrate
specificity that exist in nature have been
attributed narrow physiological functions.
For example, in lignification, some six dis-
tinct oxidases (1, 11), including peroxidases
and laccases, have been assigned roles in
lignin synthesis based on their abilities to

oxidize monolignols (lignin precursors).
Accordingly, one-electron oxidation of the
monolignol, E-coniferyl alcohol, results in
“random” bimolecular radical coupling to
afford initially dimeric products, such as
(6)-dehydrodiconiferyl alcohols, (6)-pi-
noresinols, and (6)-guaiacylglycerol 8-O-
49-coniferyl alcohol ethers (Fig. 1A). Fur-

ther oxidative coupling with monolignols
then gives rise to the macromolecular
lignins. It is inconceivable, however, that
lignin formation would be left to the vagar-
ies of such a wide range of enzymes, or be
realized in a haphazard manner.

In addition to lignins, vascular plants
contain a widely distributed, structurally di-
verse class of dimeric phenylpropanoid
products known as lignans (2, 12). They are
considered to arise via bimolecular phenoxy
radical coupling (13) but under conditions
where both the regio- and stereochemistries
are explicitly controlled in order to account
for their observed optical activities. Signif-
icantly, only a relatively small number of
different bimolecular coupling modes are
observed, with the 8,89-linkage being the
most prevalent (2, 12).

To confer stereospecificity in 8,89-linked
lignan formation, we have found that a
coupling agent, a 78-kD protein, is in-
volved. This protein has no detectable cat-
alytically active oxidative center and appar-
ently serves only to bind and orientate the
coniferyl alcohol-derived free radicals,
which then undergo stereoselective cou-
pling. The formation of free radicals, in the
first instance, requires the oxidative capac-
ity of either a nonspecific oxidase or even a
nonenzymatic single-electron oxidant.

L. B. Davin, H.-B. Wang, A. L. Crowell, D. L. Bedgar, D.
M. Martin, N. G. Lewis, Institute of Biological Chemistry,
Washington State University, Pullman, WA 99164-6340,
USA.
S. Sarkanen, University of Minnesota, Department of
Wood and Paper Science, Kaufert Laboratory, St. Paul,
MN 55108, USA.

*To whom correspondence should be addressed.

Fig. 1. Bimolecular phenoxy radical coupling products from E-coniferyl alcohol. (A) Dimeric lignans
formed via “random” coupling. (B) Stereoselective coupling to give (1)-pinoresinol. (C and D) HPLC
profiles show chirality of pinoresinol obtained for each case, respectively. [See (16) for elution details.]
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Initial assays in which crude ‘‘cell wall
preparations’’ from Forsythia suspensa were
used (3, 14) revealed that entry into the
various 8,89-lignan skeleta occurs by cou-
pling two achiral molecules of E-coniferyl
alcohol to give (1)-pinoresinol (Fig. 1B).
Both radical intermediate species, presumed
bound and orientated at the supposed ‘‘(1)-
pinoresinol synthase’’ (1PS) active site, ap-
proach each other from their si faces.

Significant difficulties were encountered
in the solubilization of the putative 1PS
but these were overcome by using a potas-
sium phosphate buffer extraction to remove
readily soluble proteins from the cell-wall
enriched homogenate. The remaining resid-
ual plant debris was consecutively extracted
first with chilled acetone at 220°C and
then potassium phosphate buffer containing
1% Triton X-100. After such treatments,
the 1PS activity was readily solubilized in 1
M NaCl (15).

Precipitation of the 1PS by ammonium
sulfate (40 to 80% saturation) gave a prepa-
ration that was subjected to cation exchange
[MonoS and perfusion (POROS SP-M)] and
gel filtration (S200) chromatography (15).
In the initial MonoS chromatographic step,
several oxidases were first eluted, all of
which catalyze nonspecific oxidations of
E-[9-3H]coniferyl alcohol leading to racemic
dimers. In contrast, fractions capable of en-
gendering (1)-pinoresinol formation eluted
later, when 333 mM Na2SO4 in 40 mM
MES-NaOH buffer (pH 5.0) was used as
eluent. These fractions were combined and
applied to a POROS SP-M column, the
elution from which with a linear gradient of
Na2SO4 (0 to 0.7 M) gave four overlapping
fractions (I to IV) as shown (Fig. 2A).

The four fractions (I to IV) from the
POROS SP-M chromatographic step were
individually rechromatographed (see Fig.
2, B and C, for profiles of fractions I and
III, respectively), each being subsequently
assayed for 1PS activity with E-[9-3H]co-
niferyl alcohol as substrate for 1 hour (16).
Fraction I had very little 1PS activity
(, 5% of total activity loaded onto the
POROS SP-M column), whereas fraction
III catalyzed nonspecific oxidative cou-
pling to give the (6)-dehydrodiconiferyl
alcohols, (6)-pinoresinols, and (6)-
erythro/threo guaiacylglycerol 8-O-49-co-
niferyl alcohol ethers displayed in Fig. 1A.
When fractions I and III were combined,
however, the original 1PS synthesizing
activity was fully restored, that is, bimo-
lecular coupling was reestablished with
complete stereoselectivity.

Subsequent gel filtration (S200) chro-
matography of fraction I gave a protein of
native molecular weight ;78 kD, whereas
SDS–polyacrylamide gel electrophoresis
showed a single band at ;27 kD (15),

suggesting that the native protein exists as a
trimer. Isoelectric focusing of the native
protein on a polyacrylamide gel (pH 3 to 10
gradient) revealed the presence of six
bands. After isoelectric focusing, each of
these bands was electroblotted onto a poly-
vinylidene fluoride (PVDF) membrane and
subjected to amino-terminal sequencing,
which established that all had similar se-
quences indicating a series of isoforms. The
ultraviolet-visible spectrum of the protein
had only a characteristic protein absorbance
at 280 nm with a barely perceptible shoulder
at ;330 nm (15). Inductively coupled plas-
ma (ICP) analysis gave no indication of any
metal being present in the protein. Thus,
the 78-kD protein lacks any detectable cat-
alytically active (oxidative) center.

Attention was next directed to the oxi-
dase preparation (fraction III). Although
not purified to electrophoretic homogene-
ity, the electron paramagnetic resonance
(EPR) spectrum of this protein preparation
resembled that of a typical plant laccase. We
then studied the fate of E-[9-3H]coniferyl
alcohol (2 mmol ml21, 14.7 kBq) in the
presence of, respectively, the auxiliary oxi-
dase (fraction III, Fig. 3A), the 78-kD pro-
tein (Fig. 3B), and both fraction III and the
78-kD protein together (Fig. 3C) (16). With

the fraction III preparation alone, only non-
specific bimolecular radical coupling occurs
to give the (6)-dehydrodiconiferyl alcohols,
(6)-pinoresinols, and (6)-erythro/threo
guaiacylglycerol 8-O-49 coniferyl alcohol
ethers depicted in Fig. 1A. With the 78-kD
protein by itself, however, a small amount of
(1)-pinoresinol formation (,5% over 10
hours) was observed, this being presumed to
result from residual traces of oxidizing capac-
ity in the preparation (see below).

When both fraction III and the 78-kD
protein were combined, full catalytic activ-
ity and regio- and stereospecificity in the
product was reestablished, whereby essen-
tially only (1)-pinoresinol was formed.
Note also that with fraction III alone, and
when fraction III was combined with the
78-kD protein, the rates of substrate deple-
tion and dimeric product formation were
nearly identical. Moreover, essentially no
turnover of the dimeric lignan products oc-
curred in either case in the presence of the
oxidase, during the time period (8 hours)
examined (Fig. 3, A and C): subsequent

Fig. 2. Fractionation of protein mixture catalyzing
(1)-pinoresinol formation by perfusion (POROS
SP-M) chromatography. (A) Separation of pro-
teins into four overlapping fractions I-IV, (B) puri-
fied fraction I, and (C) purified fraction III. [See (15)
for elution details.]

Fig. 3. Time courses for E-coniferyl alcohol deple-
tion and formation of corresponding lignans dur-
ing incubation in presence of: (A) fraction III (12 mg
protein ml21); (B) dirigent protein (770 pmol ml21);
and (C) fraction III (12 mg protein ml21) and diri-
gent protein (770 pmol ml21) together.E, coniferyl
alcohol (calculated as dimer equivalents); F, (1)-
pinoresinol; å, (6)-pinoresinols; h, (6)-dehy-
drodiconiferyl alcohols; Ç, (6)-erythro/threo guai-
acylglycerol 8-O-49-coniferyl alcohol ethers;{, to-
tal of all lignans. [Values in (C) are corrected for
1PS activity noted in (B), that is, ,5% over 10
hours.]
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dimer oxidation does not occur when E-
coniferyl alcohol, the preferred substrate, is
still present in the assay mixture. The 78-
kD protein therefore appears to determine
the specificity of the bimolecular phenoxy
radical coupling reaction. We thus propose
to describe this new class of proteins as
dirigent proteins (Latin: dirigere, to align or
guide). Gel filtration studies were also car-
ried out with mixtures of the dirigent and
fraction III proteins, in order to establish
whether any detectable protein-protein in-
teraction might account for the stereoselec-
tivity, but no evidence in support of com-
plex formation (that is, to higher molecular
size entities) was observed.

We then determined the effect that the
dirigent protein would have on plant lac-
case-catalyzed monolignol coupling. E-[9-
3H]Coniferyl alcohol (4 mmol ml21, 29.3
kBq) was incubated with a 120-kD laccase

(previously purified from Forsythia interme-
dia stem tissue) over a 24-hour period, in
the presence and absence of the dirigent
protein (16). As before, incubation with
laccase alone gave only racemic dimeric
products, with (6)-dehydrodiconiferyl al-
cohols predominating (Fig. 4A). In the
presence of the dirigent protein, however,
the process was now primarily stereoselec-
tive, affording (1)-pinoresinol (Fig. 4B),
rather than being nonspecific as observed
when only laccase was present. The rates of
both E-coniferyl alcohol (substrate) deple-
tion and the formation of the dimeric lig-
nans, respectively, were similar with and
without the dirigent protein (17). Notably,
when the oxidizing capacity (that is, laccase
concentration) was lowered fivefold, only
(1)-pinoresinol formation was observed.
Thus, complete stereoselectivity is pre-
served when the oxidative capacity does not

exceed a point where the dirigent protein is
saturated. Assays were also conducted with
E-[9-2H2, OC

2H3]coniferyl alcohol and the
dirigent protein in the presence of laccase
(18). After incubation, the newly formed pi-
noresinol was consecutively purified by re-
versed-phase and chiral column high-perfor-
mance liquid chromatography (HPLC),
with the eluent from the latter subjected to
mass spectrometric analysis. Liquid chro-
matography–mass spectrometry (LC-MS)
analysis of the resulting (1)-pinoresinol
(.99% enantiomeric excess, Fig. 5B) gave
a molecular ion with a mass-to-charge ratio
(m/z) of 368 (Fig. 5A), thus establishing
the presence of 10 2H atoms and verifying
that together the laccase- and dirigent pro-
tein–catalyzed stereoselective coupling of
E-[9-2H2, OC

2H3]coniferyl alcohol.
Other auxiliary one-electron oxidants

can also facilitate stereoselective coupling
with the dirigent protein. Ammonium per-
oxydisulfate readily undergoes homolytic
cleavage (19) and is routinely used as a
one-electron oxidant in acrylamide poly-
merization. Ammonium peroxydisulfate was
first incubated with E-[9-3H]coniferyl alco-
hol (4 mmol ml21, 29.3 kBq) for 6 hours
(16). Nonspecific bimolecular radical cou-
pling was observed, to afford predominantly
(6)-dehydrodiconiferyl alcohols as well as
the other racemic lignans (Table 1). How-
ever, when the dirigent protein was added,
the stereoselectivity of coupling was dra-
matically altered to give primarily (1)-
pinoresinol at both concentrations of oxi-
dant, together with small amounts of race-
mic lignans. This result established that
even an inorganic oxidant, such as ammo-
nium peroxydisfulfate, could promote (1)-
pinoresinol synthesis in the presence of the
dirigent protein, even if it was not oxida-
tively as selective toward the monolignol as
was the fraction III oxidase or laccase.

Next, the effects of incubating E-co-
niferyl alcohol (4 mmol ml21, 29.3 kBq)
with flavin mononucleotide (FMN) and
flavin adenine dinucleotide (FAD) were in-
vestigated because, in addition to their roles
as enzyme cofactors, they can also oxidize

Fig. 4. Time courses for E-coniferyl alcohol deple-
tion and formation of corresponding lignans dur-
ing incubation in presence of (A) Forsythia inter-
media laccase (10.7 pmol protein ml21) and (B) F.
intermedia laccase (10.7 pmol protein ml21) and
dirigent protein (770 pmol ml21) together. [See
Fig. 3 for symbol legend; (B) is corrected for resid-
ual activity shown in Fig. 3B.]

Fig. 5. LC/MS analy-
sis of [9,99-2H2,
OC2H3]pinoresinol
obtained after incu-
bation of E-[9-2H2,
OC2H3]coniferyl al-
cohol with dirigent
protein (770 pmol
ml21) and laccase
(4.1 pmol ml21). (A)
LC/MS fragmenta-
tion pattern of deca-
deuterated pinoresinol with molecular ion (m/z) 5
368. (B) Total ion current showing relative ratio of
(1)- and (2)-forms of pinoresinol after elution from
Chiralcel OD column.

Table 1. Effect of dirigent protein on product distribution from E-coniferyl alcohol oxidized by ammonium peroxydisulfate (6-hour assay).

Oxidant

Dirigent
protein

(770 pmol
ml21)

E-Coniferyl
alcohol
in dimer

equivalents
depleted
(nmol ml21)

(6)-
Guaiacylglycerol
8-O-49-coniferyl
alcohol ethers
(nmol ml21)

(6)-Dehydro-
diconiferyl
alcohols

(nmol ml21)

(6)-Pinoresinols
(nmol ml21)

(1)-Pinoresinol
(nmol ml21)

Total dimers
(nmol ml21)

Ammonium peroxydisulfate Absent 200 6 4 10 6 1 35 6 2 16 6 0 0 61 6 3
(1 mmol ml21) Present 250 6 55 6 6 0 13 6 1 0 130 6 10 149 6 11

Ammonium peroxydisulfate Absent 860 6 30 90 6 4 250 6 10 135 6 4 0 475 6 17
(10 mmol ml21) Present 1030 6 25 30 6 1 90 6 3 0 450 6 10 570 6 14

Dirigent protein Present 61 6 20 5 6 1 8 6 1 0 55 6 1 68 6 3
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various organic substrates (20). Thus, E-[9-
3H]coniferyl alcohol was incubated with
FMN and FAD, respectively, for 48 hours
(16, 21). In every instance, E-coniferyl al-
cohol oxidation was more rapid in the pres-
ence of FMN (Fig. 6A) than FAD (Fig.
6C). Although these differences between
the FMN and FAD catalyzed rates of E-
coniferyl alcohol oxidation were not antic-
ipated, a consistent pattern was sustained:
racemic lignan products were obtained,
with the (6)-dehydrodiconiferyl alcohols
predominating as before. When the time
courses were repeated in the presence of the
dirigent protein, a dramatic change in ste-
reoselectivity was observed (Fig. 6, B and
D), where essentially only (1)-pinoresinol
formation occurred. Again, the rates of E-
coniferyl alcohol depletion, when adjusted
for the traces of residual oxidizing capacity
(,5% over 10 hours) in the dirigent pro-
tein preparation, were dependent only upon
[FMN] and [FAD], as were the total amounts
of dimers formed. When full depletion of
E-coniferyl alcohol occurs, the correspond-
ing lignan dimers can begin to undergo ox-
idative changes as a function of time; specif-
ically, FMN is able subsequently to oxidize
pinoresinol, in open solution, after the E-
coniferyl alcohol has been fully depleted.

We found that the coupling stereoselec-
tivity was substrate specific. Neither E-p-[9-
3H]coumaryl (4 mmol ml21, 44.5 kBq) or
E-[8-14C]sinapyl alcohols (4 mmol ml21,
8.3 kBq), which differ from E-coniferyl al-
cohol only by a methoxyl group substituent
on the aromatic ring, yielded stereoselective
products when incubated for 6 hours with
FMN and ammonium peroxydisulfate, re-
spectively, in the presence and absence of
the dirigent protein (22). E-Sinapyl alcohol
readily underwent coupling to afford syrin-
garesinol, but chiral HPLC analysis re-
vealed that the resulting products were, in

every instance, racemic (Table 2). Interest-
ingly, by itself the 78-kD dirigent protein
preparation catalyzed a low level of dimer
formation, as previously noted, but only
gave rise to racemic (6)-syringaresinol for-
mation, which is presumably a consequence
of the residual traces of contaminating ox-
idizing capacity present in the protein prep-
aration. In an analogous manner, no stereo-
selective coupling was observed with E-p-
coumaryl alcohol as substrate. That is, only
E-coniferyl alcohol undergoes stereoselective
coupling in the presence of the dirigent pro-
tein. The low level of racemic syringaresinols
obtained with the dirigent protein prepara-
tion alone confirms that traces of contami-
nating oxidase activity were present. Given
the marked substrate specificity of the diri-
gent protein for E-coniferyl alcohol, it will
be of considerable interest to determine how
it differs from that affording (1)-syringares-
inol in Eucommia ulmoides (23).

In regard to a mechanism for stereose-
lective coupling, three distinct possibilities
can be envisaged. The most likely is that
the oxidase or oxidant generates free-radi-
cal species from E-coniferyl alcohol, and
that the latter are the true substrates that
bind to the dirigent protein prior to cou-
pling. The other two possibilities would
require that E-coniferyl alcohol molecules
are bound and orientated on the dirigent
protein, thereby ensuring that only (1)-
pinoresinol formation occurs upon subse-
quent oxidative coupling: this could occur
either if both substrate phenolic hydroxyl

groups were exposed so that they could
readily be oxidized by an oxidase or oxidant,
or if an electron transfer mechanism were
operative between the oxidase or oxidant
and an electron acceptor site or sites on the
dirigent protein.

Among the three alternative mecha-
nisms, three lines of evidence suggest “cap-
ture” of phenoxy radical intermediates by
the dirigent protein. (i) The rates of both
substrate depletion and product formation
are largely unaffected by the presence of the
dirigent protein. If capture of the free-radi-
cal intermediates is the operative mecha-
nism, then the dirigent protein would only
affect the specificity of coupling when sin-
gle-electron oxidation of coniferyl alcohol is
rate determining. (ii) An electron transfer
mechanism is currently ruled out, because
we observed no new ultraviolet-visible chro-
mophores in either the presence or absence
of an auxiliary oxidase or oxidant, under
oxidizing conditions. (iii) Preliminary kinet-
ic data (Table 3) support the concept of
free-radical capture based on the formal val-
ues of Michaelis constant (Km) and maxi-
mum velocity (Vmax) characterizing the
conversion of E-coniferyl alcohol into (1)-
pinoresinol, with the dirigent protein alone
and in the presence of the various oxidases
or oxidants (24). If free-radical capture by
the dirigent protein is the operative mech-

Fig. 6. Time courses for E-
coniferyl alcohol depletion
and formation of corre-
sponding lignans during in-
cubation in presence of (A)
FMN (0.5 mmol ml21), (B)
FMN (0.5mmol ml21) and di-
rigent protein (770 pmol
ml21) together, (C) FAD (0.5
mmol ml21), and (D) FAD
(0.5 mmol ml21) and dirigent
protein (770 pmol ml21) to-
gether. [See Fig. 3 for sym-
bol legend; (B) and (D) are
corrected for residual activi-
ty shown in Fig. 3B.]

Table 2. Effect of dirigent protein on coupling of E-sinapyl alcohol (6-hour assay).

Oxidant Dirigent protein
(770 pmol ml21)

E-Sinapyl alcohol
in dimer equivalents
depleted (nmol ml21)

Racemic
(6)-syringaresinols

(nmol ml21)

FMN (0.5 mmol ml21) Absent 570 6 100 290 6 40
Present 610 6 110 340 6 40

Ammonium peroxydisulfate Absent 1400 6 120 1020 6 40
(10 mmol ml21) Present 1520 6 10 1060 6 30

Dirigent protein Present 110 6 10 50 6 10

Table 3. Effect of various oxidants on formal Km
and Vmax values for the dirigent protein (770 pmol
ml21) during (1)-pinoresinol formation from E-co-
niferyl alcohol.

Oxidase or
oxidant

Formal Km
(mM)

Vmax
(mol s21 mol21

dirigent protein)

Dirigent
protein

10 6 6 0.02 6 0.02

Fraction III* 1.6 6 0.3 0.10 6 0.03
Laccase† 0.100 6 0.003 0.0600 6 0.0002
FMN‡ 0.10 6 0.01 0.024 6 0.001

*12 mg protein ml21. †2.07 pmol ml21. ‡0.5
mmol ml21.
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anism, the Michaelis-Menten parameters
obtained will only represent formal rather
than true values, because the highest free-
energy intermediate state during the con-
version of E-coniferyl alcohol into (1)-
pinoresinol is still unknown and the rela-
tion between the concentration of substrate
and that of the corresponding intermediate
free radical in open solution has not been
delineated.

Bearing these qualifications in mind, we
estimated formal Km and Vmax values for the
dirigent protein preparation. As noted ear-
lier, it was capable of engendering forma-
tion of low levels of both (1)-pinoresinol
from E-coniferyl alcohol and racemic (6)-
syringaresinols from E-sinapyl alcohol be-
cause of traces of contaminating oxidizing
capacity. With this preparation (Table 3), a
formal Km of 10 6 6 mM and Vmax of 0.02
6 0.02 mol s21 mol21 were obtained. How-
ever, with addition of fraction III, laccase,
and FMN, the formal Km values (mM) were
reduced to 1.6 6 0.3, 0.100 6 0.003, and
0.10 6 0.01, respectively (25), whereas the
Vmax values were far less affected at these
concentrations of auxiliary oxidase or oxi-
dant. These preliminary kinetic parameters
are in harmony with the finding that diri-
gent protein does not substantially affect the
rate of E-coniferyl alcohol depletion in the
presence of fraction III, laccase, and FMN
(Figs. 3, 4, and 6). Both sets of results are
together in accord with the working hypoth-
esis that the dirigent protein functions by
capturing free-radical intermediates that
then undergo stereoselective coupling.
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