Differential blockade of neuronal voltage-gated Na\(^+\) and K\(^+\) channels by antidepressant drugs

Graham M. Nicholson*, Tim Blanche\(^1\), Kylie Mansfield\(^2\), Yvonne Tran

Department of Health Sciences, University of Technology, P.O. Box 123, Sydney, Broadway NSW 2007, Australia

Received 7 August 2002; accepted 9 August 2002

Abstract

The effects of a range of antidepressants were investigated on neuronal voltage-gated Na\(^+\) and K\(^+\) channels. With the exception of phenelzine, all antidepressants inhibited batrachotoxin-stimulated \(^{22}\)Na\(^+\) uptake, most likely via negative allosteric inhibition of batrachotoxin binding to neurotoxin receptor site-2 on the Na\(^+\) channel. Imipramine also produced a differential action on macroscopic Na\(^+\) and K\(^+\) channel currents in acutely dissociated rat dorsal root ganglion neurons. Imipramine produced a use-dependent block of Na\(^+\) channels. In addition, there was a hyperpolarizing shift in the voltage-dependence of steady-state Na\(^+\) channel inactivation and slowed repriming kinetics consistent with imipramine having a higher affinity for the inactivated state of the Na\(^+\) channel. At higher concentrations, imipramine also blocked delayed-rectifier and transient outward K\(^+\) currents in the absence of alterations to the voltage-dependence of activation or the kinetics of inactivation. These actions on voltage-gated ion channels may underlie the therapeutic and toxic effects of these drugs.

© 2002 Elsevier Science B.V. All rights reserved.

Keywords: Na\(^+\) channel; K\(^+\) channel; Antidepressant; Imipramine; Patch clamping; \(^{22}\)Na\(^+\) flux

1. Introduction

Antidepressants are effective in the management of depression, obsessive compulsive disorder, and enuresis. In addition, they also provide analgesia for a variety of neuropathic and headache pain syndromes, regardless of the presence of depression (Richeimer et al., 1997). Unfortunately, they are associated with numerous undesirable side-effects, including sedation, which complicate their use in the long-term management of these disorders. The most serious of these is the propensity of certain antidepressants to induce cardiac arrhythmias, characterized by quinidine-like direct membrane effects in the heart and epileptic-like seizures (reviewed by Rosenstein et al., 1993).

Whilst the molecular mechanism by which antidepressants induce sedation, seizures and arrhythmias appears not to involve their therapeutic actions to enhance monoamine transmission (Trimble, 1980), it remains unclear whether modulation of ion channel function is involved. Several studies of the effects of antidepressants on voltage-gated ion channels have been undertaken. In cardiac tissue, extensive electrophysiological studies of imipramine have shown that it blocks cardiac Na\(^+\) currents in a voltage- and use-dependent manner similar to lidocaine, flecainide and quinidine (Vaughan Williams, 1984; Bou-Abboud and Nattel, 1998) resulting in imipramine being classified as a class Ia or intermediate kinetics antiarrhythmic drug (Delpón et al., 1990). In neuronal tissues, the tricyclic antidepressant drug amitriptyline has also been shown to inhibit Ca\(^{2+}\)-activated K\(^+\) channels, including both the large conductance (\(I_{\text{BK(Ca)}}\)) (Lee et al., 1997) and small conductance (\(I_{\text{SK(Ca)}}\)) subtypes (Grunnet et al., 2001). Moreover, previous studies of imipramine in neuronal tissue have shown that it also blocks voltage-gated Na\(^+\), K\(^+\) and Ca\(^{2+}\) currents in neuroblastomas (Ogata and Narahashi, 1989) and certain K\(^+\) currents in sympathetic (Wooltorton and Mathie, 1995) neurons. However, in many cases the electrophysiological properties or the specificity of neuronal block of these voltage-gated ion channels was not well characterized.

In addition to the lack of detailed analyses of antidepressant action on Na\(^+\) currents there is only limited neurochemical studies on the site(s) of action of these drugs.
previous study has shown that tricyclic and tetracyclic antidepressants inhibit veratridine-activated $^{22}\text{Na}^+$ flux in adrenal medullary cells (Arita et al., 1987), but it is not known to which of the seven orphan receptor sites on the Na$^+$ channel they may interact (for a review of the neurotoxin receptor sites, see Gordon, 1997). Nevertheless, several other drugs, including lidocaine and the anticonvulsants phenytoin and carbamazepine, have been shown to cause an indirect negative allosteric interaction with neurotoxin receptor site-2 but fail to interact with neurotoxin receptor site-1 (Willow and Catterall, 1982).

The principal objective of this study was to examine the effects of antidepressants on a variety of voltage-gated Na$^+$ channel subtypes in neuronal membranes, using a combination of $^{22}\text{Na}^+$ uptake, radiolabelled neurotoxin receptor binding and patch clamp techniques. In addition, we examined the effects of antidepressants on specific subtypes of K$^+$ channels given their significant role in neuronal depolarization and regulation of excitability. Moreover, we have given careful consideration to a comparison of the concentration dependence of any drug actions with in vivo tissue levels of antidepressant drugs.

2. Materials and methods

2.1. Preparation of rat brain synaptosomes

Synaptosomes for $^{22}\text{Na}^+$ uptake and radiolabelled neurotoxin binding assays were prepared from the brains of male Wistar rats (4–8 weeks, 250–350 g) using a combination of homogenization and differential density gradient centrifugation according to the method described previously (Little et al., 1998b). Synaptosomes were suspended in a solution consisting of (mM): choline Cl 130, KCl 5.4, MgSO$_4$ 0.8, D-glucose 5.5 and HEPES–Tris 50 (pH 7.4, 37 °C), and were stored in liquid nitrogen until required. Membrane protein concentration was determined using a Bio-Rad protein assay with bovine serum albumin as a standard.

2.2. $^{22}\text{Na}^+$ uptake assays

The effect of antidepressants on $^{22}\text{Na}^+$ uptake in rat brain synaptosomes was determined using the method described previously (Little et al., 1998b). Briefly, rat brain synaptosomes (300 μg) were suspended in 0.2 ml buffer containing 0.3 μM scorpion α-toxin (α-LqqV), 1 μM tetrodotoxin and 10 nM $[^3\text{H}]\text{BTX}$ (0.6 μCi; Du Pont). α-LqqV was purified from the venom of the scorpion Leiurus quinquestriatius quinquestratius using ion-exchange chromatography according to the method of Catterall (1976) and used to allosterically enhance the affinity of $[^3\text{H}]\text{BTX}$ binding. After incubation for 30 min at 37 °C, the reaction mixture was diluted with 4-ml ice-cold wash buffer and filtered through Whatman GF/B glass-fibre filters. Filters were then washed twice with 4 ml of wash solution. Non-specific binding was determined in the presence of 1 μM tetrodotoxin and was typically 5–15% of total binding. $[^3\text{H}]\text{batrachotoxinin} A$-20α-benzoate ([$^3\text{H}]\text{BTX})$ binding experiments were performed according to the method described by Little et al. (1998b). Rat brain synaptosomes (350 μg protein/ml) were suspended in 0.2 ml buffer, containing 0.3 μM scorpion α-toxin (α-LqqV), 1 μM tetrodotoxin and 10 nM $[^3\text{H}]\text{BTX}$ (0.6 μCi; Du Pont). α-LqqV was purified from the venom of the scorpion Leiurus quinquestriatius quinquestratius using ion-exchange chromatography according to the method of Catterall (1976) and used to allosterically enhance the affinity of $[^3\text{H}]\text{BTX}$ binding. After incubation for 30 min at 37 °C, the reaction mixture was diluted with 4-ml ice-cold wash solution and separation of free from bound toxin was achieved by rapid filtration under vacuum through Whatman GF/C glass-fibre filters. Non-specific binding was determined in the presence of 300 μM veratridine (Sigma, St. Louis, MO, USA) and was typically 5–15% of total binding.

2.4. Electrophysiological recordings

All electrophysiological experiments were conducted on acutely cultured dorsal root ganglia neurons dissociated from 4- to 12-day-old Wistar rats as described previously (Nicholson et al., 1994). Voltage-gated Na$^+$ current (I_{Na}) or K$^+$ currents (I_{K}) were recorded using the whole-cell configuration of the patch-clamp technique. Micropipettes were pulled from borosilicate glass-capillary tubing and had d.c. resis-
tances of 0.8–1.5 MΩ for recording I_{Na} or 1–2.5 MΩ for recording I_K.

The recording solutions were designed to separate either I_{Na} or I_K from other membrane currents. The internal (pipette-filling) and external solutions for I_{Na} were as follows (mM): internal, CsF 135, NaCl 10, HEPES 5, with the pH adjusted to 7.0 with 1 M CsOH; external, NaCl 30, CsCl 5, KC1 5, CaCl2 1.8, MgCl2 1, D-glucose 25, HEPES 5, tetramethylammonium chloride 70 and tetraethylammonium chloride 20, with the pH adjusted to 7.4 with 1 M tetraethylammonium hydroxide. A low external Na⁺ concentration was chosen to improve series resistance compensation and avoid amplifier saturation (Ogata et al., 1989a). The predominant Na⁺ channel subtype present in each cell was determined using a modified steady-state Na⁺ channel inactivation voltage protocol taking advantage of the separation of steady-state inactivation curves for tetrodotoxin-sensitive and tetrodotoxin-resistant Na⁺ channels (for detailed methodology, see Rash et al., 2000). Only those cells which exhibited less than 10% tetrodotoxin-resistant I_{Na}, as determined from differences in this steady-state Na⁺ channel inactivation profile, were used to determine the actions of toxins on tetrodotoxin-sensitive I_{Na}. To isolate tetrodotoxin-resistant I_{Na}, 200 nM tetrodotoxin was added to the external solution to block tetrodotoxin-sensitive I_{Na}.

The solutions used for experiments on I_K were as follows (mM): internal, KF 80, tetramethylammonium chloride 50, D-glucose 5, EDTA 5 and HEPES 5, with the pH adjusted to 7.0 using 1 M KOH; external, tetramethylammonium chloride 120, KC1 5, CaCl2 1.8 MgCl2 1, D-glucose 25 and HEPES 5, with the pH adjusted to 7.4 using 1 M NaOH. When recording I_K, 200 nM tetrodotoxin was added to the external solution to block tetrodotoxin-sensitive I_{Na}. Cells displaying tetrodotoxin-resistant I_{Na} were not used for experiments investigating actions on I_K. Since Na⁺ was absent from the external solution any involvement of Na⁺-dependent I_K was eliminated. In addition, the internal solution contained 80 mM KF eliminating any Ca²⁺-dependent components of I_K. To record delayed-rectifier K⁺ currents ($I_{K(DR)}$), 1 mM 4-aminopyridine was added to the external solution to eliminate any possible contamination by transient (‘A’-type) outward K⁺ currents (I_T). This required readjustment of the pH to 7.4 using 1 M HCl. For recordings of $I_{K(DR)}$, 25 mM tetraethylammonium chloride was added to the external solution to block $I_{K(DR)}$. Inward-rectifier K⁺ currents ($I_{K(IR)}$) were recorded in 50 mM external KCl and 75 mM external tetramethylammonium chloride.

The osmolarity of the external and internal solutions was adjusted to 300 mosM/l with sucrose to reduce osmotic stress on the dorsal root ganglion cells. Bath temperature was maintained at either 16 or 22 °C by an in-line Peltier cooling device, and did not fluctuate more than 0.2 °C during the course of an experiment.

Stimulation and recording were both controlled by an AxoData® data acquisition system (Axon Instruments, Foster City, CA, USA). Data were filtered using an internal four-pole 5-kHz Bessel lowpass filter for I_{Na} and a four-pole 1-kHz Bessel lowpass filter for I_K. Digital sampling rates were between 15 and 25 kHz depending on voltage protocol length. Leakage and capacitative currents were digitally subtracted with $P - P/4$ procedures and series resistance compensation was >80% for all cells. The experiments used in this study were rejected if there were large leak currents or currents showed signs of inadequate space clamping such as an abrupt activation of currents upon relatively small depolarizing pulses.

All animal experimentation was approved by the joint animal ethics committee of the University of Technology, Sydney (UTS), and the Royal North Shore Hospital, Sydney, Australia.

2.5. Data analysis

Numerical data are expressed as the mean ± S.E (n, number of observations) and statistical differences were determined using a paired Student’s t-test at $P < 0.05$. Mathematical curve-fitting was accomplished using SigmaPlot v4.14 for Macintosh. All curve-fitting routines used a non-linear least-squares method and splining routines.

Concentration–response curves were fitted using the following form of the Logistic equation:

$$y = \frac{1}{1 + ([C]/K_d)^n}$$ \hspace{1cm} (1)

where $[C]$ is the antidepressant concentration, n_H is the Hill coefficient (slope parameter), and K_d is the apparent dissociation constant. The IC₅₀ values obtained for inhibition of batrachotoxin-stimulated 22Na⁺ and $[^3H]$BTX binding were converted to K_i values according to the relationship described by Cheng and Prusoff (1973).

The fitted curves for the I/V relationships were obtained using the following equation:

$$I_{Na} = g_{max} \left(1 - \left(\frac{1}{1 + \exp(\frac{V-V_{1/2}}{s})}\right)(V-V_{rev})\right)$$ \hspace{1cm} (2)

where I_{Na} is the amplitude of the peak I_{Na} at a given test potential, V, g_{max} is the maximal Na⁺ conductance, $V_{1/2}$ is the voltage at half-maximal activation, s is the slope factor and V_{rev} is the reversal potential.

The values for Na⁺ conductance (g_{Na}) and K⁺ conductance (g_K) were calculated according to the equation:

$$g = \frac{I}{(V-V_{rev})}$$ \hspace{1cm} (3)

The values of g_{Na} or g_K were then normalized against g_{max} and fitted to a Boltzmann distribution according to the equation:

$$\frac{g}{g_{max}} = \frac{1}{1 + [(V_{1/2}-V)/s]}$$ \hspace{1cm} (4)
The fitted curves for steady-state I_{Na} inactivation (h_{∞}) were obtained using the following form of the Boltzmann equation:

$$h_{\infty} = \frac{1}{1 + [(V - V_{1/2})/k]}$$ \hspace{1cm} (5)

where $V_{1/2}$ is the voltage at half inactivation, and k is the slope factor.

Curve fitting routines for the unrecovered fraction used to assess the rate of recovery from I_{Na} inactivation were obtained using the following double exponential decay function:

$$1 - \frac{I_{\text{test}}}{I_{\text{cond}}} = A\exp(-t/\tau_f) + B\exp(-t/\tau_s)$$ \hspace{1cm} (6)

where I_{test} is the peak I_{Na} during the test pulse, I_{cond} is the peak current during the conditioning prepulse, τ_f and τ_s are the time constants of fast and slow recovery from inactivation, respectively, and A and B are the fractions of recovery described by τ_f and τ_s, respectively.

3. Results

3.1. Inhibition of batrachotoxin-stimulated $^{22}\text{Na}^+$ Flux

Initial $^{22}\text{Na}^+$ flux experiments aimed to establish whether antidepressant drugs were capable of directly activating voltage-gated Na^+ channels. All antidepressants tested showed no intrinsic ability to activate $^{22}\text{Na}^+$ flux in synapticosomal Na^+ channels at concentrations up to 100 μM (Fig. 1A). This indicates that antidepressants do not act as either partial or full agonists to activate Na^+ channels. We therefore examined the effects of antidepressants on batrachotoxin-stimulated $^{22}\text{Na}^+$ uptake. Imipramine and amitriptyline (tricyclic non-specific catecholamine reuptake inhibitors), and maprotiline (heterocyclic noradrenaline-selective reuptake inhibitor) were found to produce a concentration-dependent inhibition of batrachotoxin-stimulated $^{22}\text{Na}^+$ uptake in rat brain synaptosomes (Fig. 1B). Imipramine and amitriptyline inhibited $^{22}\text{Na}^+$ uptake with respective K_i values of 11.3 \pm 1.1 μM ($n=5$) and 10.6 \pm 1.7 μM ($n=3$) (Fig. 1B), whilst maprotiline inhibited the uptake with a K_i value of 18.7 \pm 2.1 μM ($n=3$), respectively (Fig. 1C). In contrast, the hydrazide irreversible monoamine oxidase inhibitor, phenelzine (Fig. 1C), showed little inhibition of batrachotoxin-stimulated $^{22}\text{Na}^+$ uptake ($n=4$). Even at 1 mM, several orders of magnitude higher than would be present at therapeutic doses, only partial inhibition of flux was observed.

3.2. Binding assays

It is well known that saxitoxin and tetrodotoxin act to inhibit the influx of Na^+ through voltage-gated Na^+ channels by binding to neurotoxin receptor site-1 at the mouth of the channel pore (Gordon, 1997). The possibility that inhibition of $^{22}\text{Na}^+$ uptake by antidepressant drugs could be mediated by a similar mechanism was investigated by competitive binding experiments with $[^3\text{H}]\text{STX}$. Employing concentrations ranging from 1 to 100 μM, comparable to those that inhibited batrachotoxin-activated $^{22}\text{Na}^+$ uptake, none of the antidepressants studied significantly altered $[^3\text{H}]\text{STX}$ binding (Fig. 1D). These results clearly indicate that the antidepressant block of voltage-gated Na^+ channels cannot be attributed to an interaction at neurotoxin receptor site-1 of the Na^+ channel.

Previous studies have shown that local anesthetics (Postma and Catterall, 1984) and anticonvulsants (Willow and Catterall, 1982) appear to reduce I_{Na} by inhibiting $[^3\text{H}]\text{BTX}$ binding via a negative allostERIC interaction. In these studies, the site-3 neurotoxin, scorpion α-toxin V (α-LqqV) isolated from the venom of the scorpion Leirus q. quinquestrarius, was used to increase the specific binding of $[^3\text{H}]\text{BTX}$ (Catterall, 1980). In the present study, both imipramine and amitriptyline produced a concentration-dependent inhibition of $[^3\text{H}]\text{BTX}$ binding in the presence of 0.3 μM α-LqqV. Dose–response data were fitted by sigmoidal curves using the Logistic equation (Eq. (1) in Materials and methods) with K_i values of 3.2 \pm 0.3 and 4.0 \pm 0.4 μM ($n=4$), respectively, and a slope parameter (n_H) of 1 indicating that there is no cooperativity between binding sites on synapticosomal Na^+ channels (Fig. 1E). These results suggest that the inhibitory effect of antidepressants on the Na^+ channel is mediated through an interaction with neurotoxin receptor site-2, reduction in the binding of α-LqqV to site-3 or that a distinct imipramine binding site exists that regulates the affinity of batrachotoxin in a negative allostERIC fashion.

3.3. Effects of imipramine on I_{Na}

Rat dorsal root ganglion neurons express two main functional types of voltage-gated Na^+ channels. Firstly, tetrodotoxin-sensitive Na^+ channels, which are readily blocked by tetrodotoxin ($K_i=0.3$ nM) (Roy and Narahashi, 1992). Following the nomenclature system for voltage-gated Na^+ channels (Goldin et al., 2000), these include $\text{Na}_{1.1}$, $\text{Na}_{1.6}$ and $\text{Na}_{1.7}$ subtypes that have been shown to be highly expressed in dorsal root ganglion neurons, together with $\text{Na}_{1.2}$, which is expressed at low levels (Felts et al., 1997; Goldin, 2001). Secondly, tetrodotoxin-resistant (tetrodotoxin-resistant) Na^+ channels, which are largely resistant to the action of tetrodotoxin ($K_i=100$ μM) (Roy and Narahashi, 1992). These include the $\text{Na}_{1.8}$ and $\text{Na}_{1.9}$ channel subtypes (Goldin, 2001).

Imipramine exerted a concentration-dependent tonic block of both tetrodotoxin-sensitive and tetrodotoxin-resistant I_{Na}. Washing with drug-free solution restored peak tetrodotoxin-sensitive and tetrodotoxin-resistant I_{Na} within 15–20 min. Fig. 2A–C and E–G shows the effects of 3, 5 and 10 μM imipramine on peak I_{Na} amplitude elicited by a
50-ms depolarizing test pulse to −10 mV from a holding potential of −80 mV every 15 s. These concentration-dependent effects occurred over a narrow range of drug concentrations. Addition of 30 μM imipramine to the perfusion bath resulted in complete elimination of both types of $I_{Na\text{,t}}$, whilst 100 nM imipramine showed no indication of channel block.

The concentration–response curves for imipramine block of tetrodotoxin-sensitive and tetrodotoxin-resistant $I_{Na\text{,t}}$ are shown in Fig. 2. The peak $I_{Na\text{,t}}$ in the presence of imipramine was expressed as a percentage of the control peak $I_{Na\text{,t}}$ and the depression of peak amplitude, after 10 min of perfusion, plotted against imipramine concentration. The data points are fitted by sigmoidal curves using the Logistic equation (Eq. (1) in Materials and methods) based on n_H values of 1, 2 and 3. Clearly, the data best fit the curves calculated on the basis of $n_H = 2$. Therefore, the cooperation of two molecules may be required in the blocking action of imipramine on both tetrodotoxin-sensitive and tetrodotoxin-resistant Na$^+$ channels in dorsal root ganglion neurons. The larger n_H values for block of dorsal root ganglion neurons in comparison with polarized brain synaptosomes may reflect differences in the subtypes of Na$^+$ channels in these tissues. However, it is also likely that since the inactivated state has a higher affinity for imipramine (see below) any binding will have a positive effect on subsequent binding yielding steeper dose–response curves with larger n_H values. The K_d values for inhibition of $I_{Na\text{,t}}$ were determined to be 5.2 ± 0.2 μM for tetrodotoxin-
sensitive I_{Na} ($n=5$) and 3.8 ± 0.1 μM for tetrodotoxin-resistant I_{Na} ($n=5$). Despite a profound blocking action on both tetrodotoxin-sensitive and tetrodotoxin-resistant I_{Na}, currents, imipramine failed to alter the activation or inactivation kinetics, such that the time to peak current and the timecourse of current decay were not affected at concentrations of imipramine up to 10 μM.

3.4. Effects on the voltage dependence of Na$^+$ channel activation

To determine whether tonic block reflected altered activation or permeability properties of Na$^+$ channels we determined the action of imipramine on current–voltage relationships. A typical experiment shown in Fig. 3 details the current–voltage relationships before and after application of 5 μM imipramine for tetrodotoxin-sensitive and 3 μM for tetrodotoxin-resistant I_{Na}. As shown in Fig. 3, imipramine had no effect on these parameters other than a reduction in peak I_{Na} amplitude. There was also little change observed in the reversal potential in post-drug recordings, indicating that the ionic selectivity of Na$^+$ channels was not altered by imipramine.

To better quantify any drug-induced shifts in the voltage dependence of activation, g_{Na} values were determined according to Eq. (3) of Materials and methods. Conductance data were then normalized and averaged across all experiments. Similar thresholds of activation in pre- and post-drug conditions were observed for both tetrodotoxin-sensitive and tetrodotoxin-resistant g_{Na}. Fitting of the data to Boltzmann distributions (Eq. (4) in Materials and methods) revealed that there was no shift in the voltage midpoint of activation of tetrodotoxin-sensitive g_{Na} (control $V_{1/2} = -24.4 ± 1.1$ vs. drug $V_{1/2} = -24.5 ± 0.7$ mV, $n=5$) nor was there a signifi-
significant change in the slope factor (control $s = 10.6 \pm 0.7$ vs. drug $s = 11.2 \pm 0.6$). Tetrodotoxin-resistant γ_{Na} demonstrated a slight depolarizing shift in activation from -6.4 ± 0.6 in controls to -1.43 ± 0.57 mV in imipramine ($n = 4$) without a change in the slope factor (control $s = 12.7 \pm 0.6$ vs. drug $s = 13.5 \pm 0.4$, $n = 4$). However, the small magnitude of the shift (less than 5 mV) would be unlikely to have any physiological ramifications.

3.5. Effects of imipramine on the voltage dependence of steady-state Na$^+$ channel inactivation (h_{∞})

Measurements were made using a standard two-pulse protocol as shown at the top of Fig. 4. The amplitude of the peak current associated with the test pulse was plotted as a function of the conditioning prepulse potential. In the presence of imipramine (3–5 μM) the maximum I_{Na} decreased by approximately 50% at large negative prepulse potentials (-120 to -130 mV for tetrodotoxin-sensitive I_{Na} and -80 to -130 mV for tetrodotoxin-resistant I_{Na}). This is comparable to that seen in the concentration–response curves in Fig. 2. When the maximum current in the presence of imipramine was normalized to that of the control, a parallel shift in the hyperpolarizing direction was observed (Fig. 4C,D). Imipramine caused a significant hyperpolarizing shift in the voltage at which half of the tetrodotoxin-sensitive I_{Na} were inactivated ($V_{1/2}$), from -66 ± 2 in controls to -80 ± 2 mV in the presence of imipramine ($\Delta V_{1/2} = -18$ mV, $P < 0.008$, $n = 5$). Similarly, $V_{1/2}$ values for tetrodotoxin-resistant I_{Na} were shifted from -40 ± 2 in controls to -46 ± 2 mV in the presence of imipramine ($\Delta V_{1/2} = -6$ mV, $P < 0.05$, $n = 6$). The slope (k) of the steady-state inactivation curve was unaffected by imipramine in both instances. Thus, block of voltage-gated Na$^+$ channels by imipramine is voltage-dependent as evidenced by a shift in the voltage-dependence of steady-state inactivation. The shift in h_{∞} could result from a higher affinity of imipramine for the inactivated rather than the resting state of the channel. For example at negative holding potentials (-130 mV) all tetrodotoxin-sensitive Na$^+$ channels exist in the resting state and thus the block by imipramine represents resting block with an apparent dissociation constant of 5 μM. At less negative holding potentials (-80 mV), at which 30% of the total channels are in the inactivated state (Fig. 4B), the block by imipramine is markedly enhanced. Therefore, under conditions where the membrane is more depolarized the block by imipramine is more pronounced due to this state-dependent binding. These results indicate that imipramine has a higher affinity for the inactivated state of the channel.

3.6. Use-dependent block of I_{Na} by imipramine

The actions of local anesthetics, antiarrhythmics, anticonvulsants and neuroleptics such as chlorpromazine are known to be modified by high-frequency stimulation (Ogata and Narahashi, 1989; Ogata and Tatebayashi, 1989; Ragsdale et al., 1991, 1996). Consequently, the effects of imipramine peak I_{Na} were examined during rapid trains of pulses delivered at 1, 3, 10 and 30 Hz delivered 90 s apart to allow for recovery from use-dependent block. Fig. 5 shows a typical experiment where currents were evoked by 10 consecutive pulses to -10 mV, for 30 ms, applied from a holding potential of -80 mV. In the control recordings there was a steady decline in current amplitude which increased at higher stimulation frequencies. In the presence of imipramine there was an additional decline in the currents. Fig. 5
shows the time course of I_{Na} elicited at each frequency. The peak I_{Na} at each test pulse (I_{n}) was normalized to that of the peak I_{Na} during the first test pulse ($I_{1\text{st}}$) and plotted as a function of the pulse number. A marked cumulative decrease in peak I_{Na} was seen at each consecutive pulse. In the presence of imipramine, however, this decline was accentuated due to the accumulation of use-dependent block. Increasing the frequency of stimulation resulted in an increase in the extent of use-dependent block. These results were typical of five experiments on tetrodotoxin-sensitive I_{Na} and six experiments on tetrodotoxin-resistant I_{Na}.

3.7. Effects on the rate of Na^+ channel recovery from inactivation

The above actions on steady-state Na^+ channel inactivation and the development of a use-dependent block indicate that imipramine binds to, and stabilizes, the inactivated state of Na^+ channels. As a result, the repriming kinetics of the Na^+ channel is expected to be delayed by imipramine. To investigate this possibility, a standard two-pulse protocol with a variable interpulse interval was employed. A conditioning prepulse for 100 or 300 ms (tetrodotoxin-sensitive and tetrodotoxin-resistant I_{Na}, respectively) to -10 mV was used to completely inactivate channels, and after the designated interpulse interval, ranging between 0.5 ms and 1 s, peak I_{Na} was recorded during a 50-ms depolarizing test pulse to the same potential. The two-pulse protocols were delivered 45 s apart. Peak I_{Na} during the test pulse (I_{test}) was normalized to that of the preceding conditioning pulse (I_{cond}) and plotted as a function of interpulse interval (ΔT).

Under control conditions, the rate of recovery of tetrodotoxin-sensitive and tetrodotoxin-resistant I_{Na} was fitted by double exponential functions (Eq. (6) in Materials and methods). Recovery was essentially complete within 2 s for tetrodotoxin-sensitive I_{Na} and 2.6 s for tetrodotoxin-resistant I_{Na}. In the presence of imipramine, the rate of recovery was fitted by a double exponential function; however, the time course of recovery was slowed for both tetrodotoxin-sensitive and tetrodotoxin-resistant I_{Na}. Fig. 6 shows a typical experiment. The lower panels in Fig. 6 show the semilogarithmic transformation of the unrecovered fraction of peak current used to quantify the rate of recovery from inactivation. Both the fast time constant of recovery (τ_f) and the slow time constant of recovery (τ_s) were slowed by imipramine; however, the fractions of recovery of τ_f and τ_s were not significantly altered. These results are representative of those obtained in seven experiments on tetrodotoxin-sensitive I_{Na} and nine experiments on tetrodotoxin-resistant I_{Na} (see Table 1).

3.8. K^+ currents in rat dorsal root ganglion neurons

Dorsal root ganglia voltage-gated K^+ channel currents can be divided into at least three main functional subtypes: the delayed-rectifier ($I_{\text{K(DR)}}$), transient ‘A-type’ (I_T), and inward-rectifier ($I_{\text{K(IR)}}$) (Ogata and Tatebayashi, 1993; Safro-nov et al., 1996; Fedulova et al., 1998). These can be differentiated by a combination of gating kinetic properties.
and pharmacological blocking agents (see Materials and methods). We have examined the actions of imipramine on these three voltage-gated K⁺ channel functional subtypes.

3.9. Effects of imipramine on Iₖ

Imipramine exerted a concentration-dependent depression of peak Iₖ(DR) amplitude. Fig. 7 shows the typical effects of 1, 10, 30 and 1000 μM imipramine on peak Iₖ(DR) amplitude elicited by a standard 250-ms depolarizing pulse from −40 to −10 mV. The concentration–response data were fitted by sigmoidal curves using the Logistic equation (Eq. (1) in Materials and methods) based on values of 1 and 2. Clearly, the data best fit the curves calculated on the basis of n = 1. The dissociation constant (Kᵣ) was found to be 46 ± 3 μM (n = 4–7).

We found that Iₜ was preferentially expressed in larger neurons and confined our study of Iₜ to cells having amplitude.
diameters larger than 35 μm. Similar to its effects on $I_{K(DR)}$, imipramine also exerted a concentration-dependent depression of peak I_T. Fig. 7 shows the typical effects of 1 μM (A), 10 μM (B), 30 μM (C) and 1 mM (D) imipramine on $I_{K(DR)}$ elicited by a 250-ms depolarizing test pulse to -10 mV from a holding potential of -40 mV before (a) and 10 min after (b) the addition of imipramine (b). All currents were recorded in the presence of 1 mM 4-aminopyridine. (E–I) Effects of 1 μM (F), 50 μM (G), 100 μM (H) and 300 μM (I) imipramine on the transient (‘A’-type) current (I_T) before (a) and 10 min after (b) the addition of imipramine. I_T was elicited by a two-pulse protocol, from a holding potential of -40 mV and consisted of a 2300-ms hyperpolarizing pulse to -120 mV followed by a 700-ms test pulse to -40 mV. At this potential, I_{DR} was not activated and thus I_T could be evoked in isolation. In addition, 25 mM tetraethylammonium-Cl was added to block any residual I_{DR}. (E,J) Concentration–response curves for inhibition of $I_{K(DR)}$ (E) and I_T (J). Data were fitted with Eq. (1) in Materials and methods and represent the mean ± S.E. of 4–7 experiments at each concentration.

Fig. 7. Concentration-dependent effects of imipramine on K⁺ currents in dorsal root ganglion neurons. (A–D) Representative effects of 1 μM (A), 10 μM (B), 30 μM (C) and 1 mM (D) imipramine on $I_{K(DR)}$ elicited by a 250-ms depolarizing test pulse to -10 mV from a holding potential of -40 mV before (a) and 10 min after (b) the addition of imipramine (b). All currents were recorded in the presence of 1 mM 4-aminopyridine. (F–I) Effects of 1 μM (F), 50 μM (G), 100 μM (H) and 300 μM (I) imipramine on the transient (‘A’-type) current (I_T) before (a) and 10 min after (b) the addition of imipramine. I_T was elicited by a two-pulse protocol, from a holding potential of -40 mV and consisted of a 2300-ms hyperpolarizing pulse to -120 mV followed by a 700-ms test pulse to -40 mV. At this potential, I_{DR} was not activated and thus I_T could be evoked in isolation. In addition, 25 mM tetraethylammonium-Cl was added to block any residual I_{DR}. (E,J) Concentration–response curves for inhibition of $I_{K(DR)}$ (E) and I_T (J). Data were fitted with Eq. (1) in Materials and methods and represent the mean ± S.E. of 4–7 experiments at each concentration.

3.10. Effects on the voltage dependence of K⁺ channel activation

Current–voltage relationships for $I_{K(DR)}$ were examined using 250-ms test pulses to various membrane potentials ranging between -50 and $+50$ mV in 10-mV steps, from a holding potential of -40 mV. To prevent contamination by I_T, 1 mM 4-aminopyridine was added to the external bathing
A typical experiment showing the current–voltage relationship for $I_{K(DR)}$ before and after application of 30 μM imipramine is shown in Fig. 8. Under control conditions an outward $I_{K(DR)}$ was activated in response to a depolarizing test pulse at potentials greater than +40 mV, inward rectification was not evident even at potentials of +50 mV (Fig. 8A). Following perfusion with 30 μM imipramine there was no alteration in the time course or voltage-dependence of channel activation. The only observed change was the reduction in peak amplitude at all membrane potentials (Fig. 8C). The results presented here were confirmed in nine other experiments. To quantify any drug-induced shifts in the voltage dependence of activation, $g_{K(DR)}$ values were determined according to Eq. (3) of Materials and methods. Conductance data were then normalized and averaged across all experiments. Fitting of the data to Boltzmann distributions (Eq. (4) in Materials and methods) revealed that there was no shift in the voltage midpoint of activation of $g_{K(DR)}$ (control $V_{1/2} = 22.1 ± 1.1$ vs. drug $V_{1/2} = 24.7 ± 2.6$ mV, $n = 9$) nor was there a significant change in the slope factor (control $s = 16.9 ± 1.5$ vs. drug $s = 16.5 ± 1.6$).

Current–voltage relationships for the I_T were examined using a two-pulse protocol, shown above Fig. 8B. As before 25 mM of tetraethylammonium-Cl was added to block any residual $I_{K(DR)}$. The blocking effect of 100 μM imipramine was resistant to washout with drug-free solution with only a partial reversal following washout for 10 to 20 min. A typical experiment showing the current–voltage relationship for I_T before and after applications of 100 μM imipramine is shown in Fig. 8D–F. Under control conditions the outward I_T was activated in response to a depolarizing test pulse at potentials greater than −60 mV. Following perfusion with imipramine there was no alteration to the voltage-dependence of channel activation or changes in the rate of inactivation. The only observed change was the reduction in peak I_T amplitude. The results presented here were confirmed in eight other experiments. Fitting of the data to Boltzmann distributions (Eq. (4) in Materials and methods) revealed that there was no shift in the voltage midpoint of activation (control $V_{1/2} = −30.4 ± 2.5$ vs. drug $V_{1/2} = −33.6 ± 2.6$ mV, $n = 5$) nor was there a significant change in the slope factor (control $s = 14.3 ± 2.2$ vs. drug $s = 12.7 ± 1.7$).

Current–voltage relationships for the $I_{K(IR)}$ were examined using 700-ms hyperpolarizing test pulses to various membrane potentials ranging between −80 and −130 mV from a holding potential of −70 mV in 10-mV steps. A typical experiment showing the current–voltage relationship for $I_{K(IR)}$ before and after application of 100 μM imipramine is shown in Fig. 8G–I. Under control conditions the outward $I_{K(IR)}$ was activated in response to a hyperpolarizing test pulse at potentials less than −80 mV. Following perfusion with 100 μM imipramine there was no alteration to the threshold of channel activation or kinetics.

Fig. 8. Typical effects of imipramine on the current–voltage relationships for K^+ currents in dorsal root ganglion neurons. (A–C) Typical $I_{K(DR)}$ currents elicited by a 250-ms test pulses from −50 to 60 mV in 10-mV steps in the presence of 1 mM 4-aminopyridine, using the pulse protocol shown above (A). (D–F) Typical I_T currents elicited by 700-ms test pulses from −80 to 40 mV in 10-mV steps, using the pulse protocol indicated above (D). (G–I) Typical $I_{K(IR)}$ currents elicited by 700-ms test pulses from −80 to −130 mV in 10-mV steps, using the pulse protocol shown above (G). Upper panels (A,D,G) show control currents. Middle panels (B,E,H) show the effect on K^+ currents recorded following a 10-min perfusion with 30 μM (B), 100 μM (E) and 100 μM (H) imipramine. Lower panels (C,F,I) show current–voltage relationships for $I_{K(DR)}$, I_T and $I_{K(IR)}$ peak currents plotted as a function of membrane potential in the absence (○) and presence of imipramine (●). Insets in (C) and (F) show normalized conductance curves (g_{max}/g_{max}) for $I_{K(DR)}$ and I_T currents. Note the lack of alteration in the voltage of dependence of activation following perfusion with imipramine.
4. Discussion

The present results show that a structurally diverse group of antidepressant drugs bind with voltage-gated Na\(^+\) channels to inhibit \(I_{\text{Na}}\). Whilst there is a tonic block of Na\(^+\) channels produced by imipramine there is also strong evidence to indicate a use-dependent block of these channels. It would therefore appear that the blocking action of imipramine can be interpreted on the basis of the modulated receptor hypothesis of Hondeghem and Katzung (1977) developed for local anesthetic block of Na\(^+\) channels which postulated preferential binding of the drugs to the inactivated state of the channel. Since imipramine has a higher affinity for the inactivated state of the Na\(^+\) channel a use-dependent block occurs because the proportion of the time spent in the inactivated state progressively increases during a repetitive train of depolarizing pulses. Therefore drug bound during one stimulus cannot completely dissociate by the next pulse. This type of use-dependent block has been described for other therapeutic agents including local anesthetics, phenytoin, carbamazepine and neuroleptics such as chlorpromazine (Willow et al., 1985; Ogata and Tatebayashi, 1989; Ragsdale et al., 1991, 1996).

Despite being unable to measure the \(K_a\) of imipramine for the activated state of the channel it must be higher than \(K_{\text{rest}}\) and \(K_{\text{inact}}\) for two reasons. Firstly, imipramine did not increase the decay kinetics of \(I_{\text{Na}}\) normally seen with open channel blockers where the drug binding rate is faster for the open channel than the inactivated channel (Colquhoun and Hawkes, 1983). Secondly, imipramine failed to alter the shape of the \(I/V\) relationship (Fig. 3C,F). If imipramine had a higher affinity for the open state of the channel then block of \(I_{\text{Na}}\) would have been more apparent when the majority of channels are open, i.e. more positive than \(-10\) mV in tetrodotoxin-sensitive Na\(^+\) channels and \(+10\) mV in tetrodotoxin-resistant Na\(^+\) channels.

The use-dependent effects shown here are remarkably similar to those exhibited by the anticonvulsants carbamazepine and phenytoin (Willow et al., 1985), which exert their therapeutic action by a use-dependent inhibition of Na\(^+\) channels due to preferential binding of drug to inactivated channels (Willow et al., 1985). The present study also shows that inactivated Na\(^+\) channels undergo a transition to the resting state after depolarization at a slower rate in the presence of imipramine, indicating a prolongation of the refractory period. A variety of other drugs such as the anticonvulsants phenytoin and carbamazepine (Willow et al., 1985), the antiarrhythmic verapamil (Ragsdale et al., 1991), and the local anesthetic tetracaine (Ragsdale et al., 1991) all slow the rate of Na\(^+\) channel recovery from inactivation. This slowed rate of recovery from inactivation reflects either slow drug dissociation from the inactivated or resting states or slow conversion of channels from the inactivated to the resting states consistent with the use-dependent block of Na\(^+\) channels.

In the present study, we observed that antidepressants failed to directly activate \(22\)Na\(^+\) uptake but potently inhibited batrachotoxin-activated \(22\)Na\(^+\) uptake in rat brain synaptosomes in a similar fashion to that observed in veratridine-induced \(22\)Na\(^+\) flux in adrenal medullary cells (Arita et al., 1987). This inhibition of \(22\)Na\(^+\) uptake did not occur via an interaction with site-1 since we found that a range of antidepressants did not inhibit \(^{[3H]}\)STX binding. This is supported by the findings of Arita et al. (1987) who found that saxitoxin did not compete for inhibition of \(^{[3H]}\)imipramine binding in adrenal medullary cells.

We report that tricyclic antidepressants produce a dose-dependent inhibition of batrachotoxin binding. The observed inhibition of \(^{[3H]}\)BTX binding and the reduction in batrachotoxin-activated \(22\)Na\(^+\) flux could therefore be due to a direct competitive displacement of batrachotoxin by the antidepressants or negative allosteric interactions at neurotoxin receptor site-2. Previous neurochemical experiments found that phenytoin, carbamazepine (Willow and Catterall, 1982), and tetracaine (Postma and Catterall, 1984) all interact with neurotoxin site-2, via a negative allosteric mechanism. The present patch clamp experiments indicate that imipramine preferentially binds to non-conducting states of the channel particularly the inactivated state and stabilizes these states. Since the \(22\)Na\(^+\) uptake experiments were performed in synaptosomes where the resting membrane potential is slightly more positive than \(-60\) mV a significant percentage of the channels will be inactivated. Thus, the action of site-2 toxins such as batrachotoxin is to shift the inactivated channels into the open state. Imipramine indirectly competes with this process by stabilizing the inactivated state that has low affinity for site-2 toxins thus resulting in a negative allosteric inhibition of \(^{[3H]}\)BTX binding. However, Arita et al. (1987) found that the site-2 partial agonist, veratridine, does not compete for \(^{[3H]}\)imipramine binding. This apparent lack of interaction with site-2 may reflect differences in the action of antidepressants or site-2 toxins or differences in the subtypes of Na\(^+\) channels in adrenal medullary cells in comparison with brain synaptosomes.

In contrast to its non-selective actions on voltage-gated Na\(^+\) channels, imipramine was 1.3-fold more potent at blocking \(I_{K(\text{DR})}\) than \(I_R\), but was practically inactive on \(I_{K(\text{IR})}\) (\(K_a<1\) mM). Despite profound blocking effects of imipramine on outward \(K\) channel subtypes, imipramine did not alter the voltage-dependence of activation or the timecourse of inactivation. The selectivity of block is similar in cardiac myocytes and sympathetic neurons (Delpón et al., 1991, 1992; Wooltorton and Mathie, 1995) although imipramine appears to be less potent on \(K\) channels in dorsal root ganglion neurons than other neuronal or cardiac cells (Ogata et al., 1989b; Delpón et al., 1992; Wooltorton and Mathie, 1995).

There is considerable difficulty in determining if these effects of antidepressants are clinically relevant given the wide variance in reported plasma concentrations. Never-
theless, it is commonly regarded that imipramine plasma concentrations of around 200 ng/ml (100–300 ng/ml) are considered to be therapeutic (see Benet and Williams, 1990). However, it would appear that tricyclic antidepressant drugs accumulate in brain tissue with a brain/plasma drug concentration ratio of between 8:1 and 40:1 (Glotzbach and Presson, 1982). At therapeutic plasma concentrations, the brain concentration for imipramine \((M_r 280.4) \) can therefore be expected to be between 1.6 and 8 \(\mu \)g/ml, equivalent to 5.4–27.2 \(\mu \)M given a brain tissue specific gravity of 1.050 (Nelson et al., 1971). In overdose cases, toxicity can be expected above plasma concentrations of 1 \(\mu \)g/ml. These studies therefore provide quantitative confirmation of the significance of effects on voltage-gated \(Na^+ \) channels at supratherapeutic and even therapeutic antidepressant concentrations. Although the \(K_a \) values for block of \(I_{K(DR)} \) and \(I_T \) were higher than for \(I_{Na} \), it was also evident from the concentration–response curves that >30% block of these currents occurs at concentrations higher than 20 \(\mu \)M. It is therefore reasonable to predict that significant inhibition of \(Na^+ \) and \(K^+ \) channels will occur which can profoundly alter cellular excitability.

Potassium channels are important regulators of neuronal membrane potential and neuronal excitability. Drugs that interact with neuronal \(K^+ \) channels would therefore have profound effects on cellular signaling. It has already been shown that the tricyclic antidepressant desipramine can prolong the terminal action potential in rat sympathetic neurons resulting in increased transmitter release (Bennett and Middleton, 1975). The results presented here suggest that this can be explained by a blockade of \(I_{K(DR)} \) and complement the findings of Woolorton and Mathie (1995). Inhibition of \(I_T \) may also contribute to the underlying proconvulsant and proarrhythmic adverse-effects of imipramine. A direct mechanism of antidepressant epileptogenesis is postulated by the study by Ogata and Tatebayashi (1993) examining the effects of the neuroleptic chlorpromazine on dorsal root ganglion \(K^+ \) channels. Their results indicate that chlorpromazine exerts a potent blocking action, which, given the importance of \(I_T \) for neuronal repolarization, suggests a mechanism by which chlorpromazine could induce seizures. Tricyclic antidepressants would be likely to exert similar effects. The \(I_T \) seen in dorsal root ganglion neurons also has similar properties to the slowly inactivating \(K^+ \) currents found in nodose and hippocampal neurons which have previously been shown to play an important role in limiting firing frequency. Inhibition of this current can induce profound repetitive firing of action potentials (Stansfeld et al., 1986). Other agents that block \(I_T \) such as 4-aminopyridine have also been shown to induce repetitive firing in rat dorsal root fibres (Baker et al., 1985). Thus imipramine may affect cellular excitability through a blockade of \(I_T \).

In conclusion, this study shows that imipramine produces differential inhibition of various subtypes of voltage-gated \(Na^+ \) and \(K^+ \) channels. At therapeutically relevant doses, the interaction of imipramine with \(Na^+ \) channels may result in adverse effects such as antiarrhythmic and sedative actions. Conversely, the block of \(K^+ \) channels by imipramine may provide an explanation as to the occurrence of seizures and cardiac arrhythmias. Seizures, however, represent a complex phenomenon with a multifactorial aetiology. It is therefore conceivable that antidepressant-related seizures arise from a combination of mechanisms, mediated through a combination of short- and long-term interactions with multiple neurotransmitter and ion channel systems. Further study is warranted particularly in neurons expressing other \(Na^+ \) channel subtypes found centrally such as \(Na_{1.2} \) and \(Na_{1.3} \) (Goldin, 2001), especially in view of the potential seriousness of seizures, and the extent of worldwide antidepressant drug usage.

Acknowledgements

The authors wish to thank Dr. Max Willow for his help with the neurochemical experiments, Ms. Cathy Zappia (Department of Health Sciences, UTS) for assistance with the preparation of the rat brain synaptosomes and Dr. John Daly (National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD) for the gift of unlabelled batrachotoxin. Supported by a Clive and Vera Ramaciotti Foundation Grant and a UTS Internal Research Grant to G.M.N.

References

Cheng, Y., Prusoff, W., 1973. Relationship between inhibition constant \((K_i) \) and the concentration of an inhibitor which causes 50% inhibition \((IC_{50}) \) of an enzymatic reaction. Biochem. Pharmacol. 22, 3099–3108.

Delpón, E., Valenzuela, C., Tamargo, J., 1990. Tonic and frequency-de-

Willow, M., Catterall, W.A., 1982. Inhibition of binding of \([3H] \) batrachotoxinin A 20-\(\alpha \)-benzoxoate to sodium channels by the anticonvulsant drugs diphenylhydantoin and carbamazepine. Mol. Pharmacol. 22, 627–635.
