Reminders: HW #8 due Monday November 7
Reading: 7.2 for Wednesday.
Exam 2: 1 week from this Friday! Sample tests now posted on the website. Keys posted outside my office.

Problem review: HW #6

Hypothesis Testing Continued
Population mean and standard deviation unknown

Last week: Z-test for a sample mean (review problems from Friday)

\[z = \frac{\bar{x} - \mu_0}{\sigma/\sqrt{n}} \]

Today: More realistic circumstances
Population mean and standard deviation unknown

What could we substitute into \(z = \frac{\bar{x} - \mu_0}{\sigma/\sqrt{n}} \) to leave \(\mu \) as the only unknown parameter?

In \(z \), the numerator is standardized by the standard deviation of the sampling distribution of the sample mean, \(\frac{\sigma}{\sqrt{n}} \).

A related quantity, but one that we can actually estimate from data in a sample, is called the standard error of the sample mean, \(SE_{\bar{x}} = \frac{s}{\sqrt{n}} \).

If we substitute the standard error of \(\bar{x} \) for its standard deviation, we meet today’s new and improved test statistic, \(t = \frac{\bar{x} - \mu_0}{s/\sqrt{n}} \)

This test statistic is a random variable, but it is NOT standard Normal. In fact, it is not Normal at all.
It’s sampling distribution is cleverly called the t-distribution. The single parameter for this distribution is called the degrees of freedom, equal to \(n-1 \).
Let’s look at it
Review and rederivation: Level C one-sample t confidence interval for a sample mean, for a sample of size n.

1. Find the “critical value” t^*, where t^* is a value from the t-distribution $t(n-1)$ such that the area under the curve between $-t^*$ and t^* equals C. Or put another way, t^* is the score for which $P(t > t^*) = \frac{1-C}{2}$ (so once we pick C, z^* is a fixed constant)

2. Remember that in the t case, we standardize the sample mean \bar{x} by the standard error $t = \frac{\bar{x} - \mu}{s/\sqrt{n}}$ and the confidence interval can then be defined as

$$P(-t^* \leq \frac{\bar{x} - \mu}{s/\sqrt{n}} \leq t^*) = C$$

3. Now we just do some 9th grade algebra (see Friday’s notes) to get the level C one-sample t C.I. for the population mean

$$P\left(\bar{x} - t^* \frac{s}{\sqrt{n}} \leq \mu \leq \bar{x} + t^* \frac{s}{\sqrt{n}}\right) = C$$

Put another way the level C one-sample t C.I. is

$$\bar{x} \pm t^* \frac{s}{\sqrt{n}}$$

where $t^* \frac{s}{\sqrt{n}}$ is the margin of error for level C

So now, even if I don’t know the population standard deviation σ I can construct an interval that includes the population mean μ for any given level of confidence. Of course, since I usually do not know the population standard deviation, this is terribly useful…

Hypothesis testing procedure: still applies for the t

1. State the null hypothesis H_0, and the alternative hypothesis H_1.
2. Specify the significance level α.
3. Calculate the value of the test statistic. t instead of z.
4. Find the p-value for the observed data, based on the $t(n-1)$ distribution, rather than the
Today’s hypothesis test: Hypothesis test for a population mean: the One-Sample t-Test.
To test the null hypothesis $H_0: \mu = \mu_0$ based on a SRS of size n, we compute the z test statistic

$$t = \frac{\bar{x} - \mu_0}{s/\sqrt{n}}$$

This statistic is a standard Normal random variable T with the sampling distribution $t(n-1)$

One-tailed vs. two-tailed hypothesis tests also still apply
Remember: The P-value for two-tailed tests is twice that of either one-tailed test. So it is “easier” to reject a null hypothesis if you have good a priori reason to use a one-tailed (directional) alternative hypothesis.

Revisit our 4 problems from Friday. Ignore information about population standard deviation σ and answer the questions based on the t-approach. Is this appropriate in all cases?