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Letter to Editor

Multiplicative by nature: Why logarithmic transformation is
necessary in allometry

While we agree with Packard (2008) on the importance of
selecting appropriate statistical models of allometric scaling
relationships, we strongly disagree with his conclusion that
standard methods for fitting allometric models produce results
that are ‘‘biased and misleading’’. His argument, which is
elaborated in a series of related publications (Packard and
Boardman, 2008; Packard and Birchard, 2008) is based on
questionable and misleading assumptions. In short, he reaches
the wrong conclusion about log-transformation in allometry
because most biological phenomena, including growth, reproduc-
tion, sensation, and metabolism are inherently multiplicative,
rather than additive, and it is proportional rather than absolute
variation that matters, especially across the orders of magnitude
spanned by most allometric analyses.

Our difference with Packard is based on the conflict between
arithmetic and geometric (or multiplicative) assumptions about
biological variation (Galton, 1879; Gingerich, 2000). Packard
(2008) correctly shows that using standard regression methods
on log-transformed data makes the implicit assumption that
errors are multiplicative rather than additive. This standard
approach in allometry is often seen as introducing bias (Zar,
1968; Smith, 1993), because the resulting parameters do not
actually minimize the arithmetic deviations between the original,
untransformed data and the model. That is, standard allometric
models actually predict the geometric (rather than arithmetic)
mean response. However, in biology (and many other physical and
social sciences) the assumed multiplicative error is often the
appropriate model of variation. As eloquently pointed out by
Galton (1879), the normal, additive error model, ‘‘y asserts that
the existence of giants, whose height is more than double the
mean height of their race, implies the possibility of dwarfs, whose
stature is less than nothing at all’’. In contrast, the multiplicative
error model asserts that double-sized giants occur as frequently as
half-sized (rather than zero-sized) dwarves. That is, where the
additive error model assumes that equivalent deviations differ by
equal amounts, the multiplicative error model assumes that they
differ by equal proportions (Gingerich, 2000). We argue here that
the multiplicative nature of biological processes and the focus of
allometric study on phenomena that span orders of magnitude,
make the multiplicative error model an appropriate feature,
rather than a defect, of standard allometric analyses.

As was emphasized by Julian Huxley’s pioneering work
(Huxley, 1932) allometry is the study of relative biological
variation. Packard asserts that log-transformation is inappropriate
for allometry because it distorts the relationship between the
variables, overweights observations of small magnitude, and hides
outliers. In fact, the log-transformation is used in allometry
specifically to uniformly depict relative variation in the relation

between variables, to avoid overweighting large-magnitude
observations, and to normalize sample variance and reduce the
influence of outliers (Huxley, 1932; Peters, 1983; Calder, 1984;
Niklas, 1994). Thus, the supposed weaknesses Packard sees in log-
transformation are the very strengths that necessitate its use. To
understand why Packard’s assertion is problematic, consider the
observation by William Calder (1984) that ordinary measure-
ments of metabolic rate vary by about 20% in mammals from
shrews and elephants, corresponding to about 0.175 units on a
(base-10) logarithmic scale. That is, shrew metabolic rate varies by
only about 0.035 W, while elephant metabolic rate can vary by
284 W. Thus, despite the fact that variation in both animals is
proportionally the same, elephants appear to be much more
variable on an arithmetic scale. For an elephant, a 1 W variation in
metabolic rate is miniscule, a barely detectable noise. In contrast,
for a shrew, a single-watt change in metabolic rate is more than a
5-fold adjustment, dwarfing its ordinary metabolic rate. Assuming
that the absolute variation observed in elephants applies to
shrews, or vice versa, is clearly absurd, yet this is the implicit
assumption of applying an additive error model on an arithmetic
scale, whether using a linear or non-linear fit. For data spanning
orders of magnitude, logarithmic scales allow us to assess relative
variability in a meaningful way, and linear regression on log-
transformed variables ensures that relative residual variation is
treated uniformly across scales in the estimation of parameters.

If we discard the assumption that the arithmetic scale (and
additive error model) have some sort of conceptual priority (see
below), we can use relative variation as a basis for comparing the
standard allometric model to the alternatives presented by
Packard in his examples. He first examines the eye mass–brain
mass allometry in 24 species of terrestrial Carnivora (Burton,
2006), concluding that log-transformation hides the true nature of
the bears as outliers. However, for the reasons detailed above,
Packard’s method of visual inspection on an arithmetic plot is
clearly biased toward identifying points at the large end of the
size spectrum; they are (arithmetically) more variable. Dealing
with outliers is always a tricky business, but given the two order
of magnitude range of brain sizes (from �5 to 500 g) and the
relatively small number of observations, we need a more reliable
method than simple visual inspection, especially since the bear
species have the two largest brains in the dataset. Preferably, we
would like to see some biologically relevant reason for excluding
the bears. Packard offers none, so we are left to compare a model
with bears to one without.

So how do the models compare biologically? The standard
allometric model tells us that the two bear species do indeed have
relatively small eyes. Given their brain size, we would expect
them to be substantially (�4 times) heavier, similar to the
observed eye mass of a hyena or a leopard (Burton, 2006). This
conclusion leads to additional biological questions. For example, is
relative eye size related to feeding strategy or phylogenetic
affinity? Indeed, from these data, the six species within the
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monophyletic Arctoidea (the two bears, raccoon, coati, kinkajou,
and weasel) all have eyes that are smaller than expected from the
standard allometric model. In contrast, among the other 18
species, which are from the Canidae (which is sister to the
Arctoidea, (Flynn et al., 2005) or the more distant Feliformia, only
three species (two foxes and a cougar) have negative residuals.
Analysis of covariance suggests that the Arctoidea do indeed have
a lower scaling coefficient (F ¼ 42.8, po10�5) but share common
exponent (F ¼ 0.30, p ¼ 0.59) with the other clades. Thus, it
appears that the residual variation around the model may carry a
phylogenetic signal. Of course, establishing the importance of this
signal requires further analysis (and probably more data), but the
hypothesis itself represents utility for the standard allometric
model.

According to Packard’s model based on absolute, additive
error, bears truly would be outliers. We would expect their eyes
to be more than ten times larger, between 50 and 70 g, or
about the size of an elephant’s. Thus bears are simply ‘‘different’’
and can only be eliminated from the analysis, even though
doing so reduces the size range of our data and eliminates 1

3 of
the Arctoidea from an already small and phylogenetically
spotty dataset. Furthermore, while three of the four remaining
Arctoidea still have eyes that are smaller than expected, they
are joined by six other species of Canidae and Feliformia. Thus,
the phylognetic signal suggested by the standard model is
effectively eliminated along with the bears. We should also point
out that the eyes of domestic cats are �4 times heavier than
expected from Packard’s model. That is, in relative terms, their
deviation from Packard’s model is similar in magnitude to the
deviation of the bear species from the standard allometric model.
Yet domestic cats would never be construed as outliers by
Packard’s method, simply because they are relatively small. By
focusing on the arithmetic domain and eliminating biologically
valid data, Packard mischaracterizes the pattern of covariation
between brains and eyes and obscures potentially important
phylogenetic signals in the comparative biology of the Carnivora.
In contrast, log-transformation demonstrates that relative varia-
bility in eye size is homoscedastic across orders of magnitude in
brain size (Packard, 2008, Fig. 1A) and that although bears and
their relatives have small eyes, they are in fact still comparable to
other carnivores.

Packard’s second example focuses on the basal metabolic rate
in mustelids (Muñoz-Garcia and Williams, 2005) and especially
highlights how the scale-sensitivity of arithmetic plots can hide
important variation at small magnitudes. Packard shows that the
standard allometric function provides a poor prediction for the
largest species. Indeed, the prediction is about 5000 kJ/d too low
for �30 kg sea otter, about a 2-fold deviation. On the other hand,
the nonlinear fit (which assumes an additive error model) is right
on for the otter. Indeed, because of its large-size, the otter has a
very strong influence on the additive model. If the otter is
withheld from the analysis, a nonlinear fit with additive errors
results in the model Y ¼ 1.58X0.773, which is much closer to the
standard allometric model derived from the all of the data,
Y ¼ 2.29X0.736 than it is to Packard’s fit, Y ¼ 0.03X1.470. This
disproportionate influence does not mean that the otter should
be removed from the data, it simply points to the need to change
the statistical model to one that considers relative rather than
absolute errors—as in the standard allometric analysis. Further-
more, by examining the additive fit on the logarithmic plot
(Packard, 2008, Fig. 2A), it becomes clear that while the arithmetic
deviations from the Packard’s model are indeed small, estimates
of basal metabolic rate for the three smallest species of mustelid
are all approximately 100-fold too low! In contrast, the data are
all within about 2-fold of the ‘‘biased and misleading’’ standard
allometric model. If the desire is to model variation in metabolic

rate across all of the species, and not just for the largest one, we
must reassess where the bias lay.

Packard’s conclusions depend on the assumption that additive
variation should always be the default standard for parameter
estimation and data exploration. We have shown that this
assumption is especially dangerous when examining patterns
across many orders of magnitude, because the same relative
deviation (e.g. 10% or 5-fold) will be a much smaller absolute
(arithmetic) deviation for small observations than large observa-
tions. That is, for biological processes that span orders of
magnitude, variation in the arithmetic domain is scale-depen-

dent, and using an additive error model, whether with a linear
or nonlinear fit, will be biased in its treatment of relative

deviations. While the biological relevance of proportional, rather
than absolute variation was pointed out almost 130 years
ago (Galton, 1879), formal comparisons of arithmetic and
geometric error models are almost non-existent (Gingerich,
2000). However, while the two models are difficult to distinguish
when the variance is small relative to the mean, recent empirical
and theoretical work suggests that geometric error should
often be the default in biology (Gingerich, 2000; Graham
et al., 2003). In any case, the voluminous literature full of
homoscedastic logarithmic plots, including the papers from which
Packard drew his examples (Burton, 2006; Muñoz-Garcia and
Williams, 2005), underscores the general utility of a multiplicative
error model for many allometric and other biological regression
problems.

The default status of the additive error model is perhaps
based on the deeper assumption that arithmetic scales are
somehow truer or more intuitive, and that log-transformat-
ion thus represents a distortion of the ‘‘real’’ data. However,
recent research strongly challenges the assumption that arith-
metic scales are more natural, finding that the initial intuition
in humans across cultures is to scale numbers geometri-
cally, especially across orders of magnitude (Dahaene et al.,
2008). Interestingly, Gingerich (2000) points out that our
evolved senses (e.g. eyes, ears) measure the world geometri-
cally, based on proportional changes in stimuli (Fechner, 1860),
while our constructed measurement devices (e.g. rulers,
balances) generally do so arithmetically, like counting on our
fingers. Thus, our deliberate, arithmetic measurements may be
incomplete, requiring log-transformation to make them into
proportional similarities and differences sensible to our evolved
brains (Gingerich, 2000). At the very least, further formal
comparisons of geometric and arithmetic error models are
warranted.

Log-transformation is not simply a statistical convenience. It is
indeed a non-linear transformation, but it places numbers into a
geometric domain in which proportional deviations are repre-
sented consistently, independent of the scale and units of
measurement. But more importantly, it is often appropriate in
biology because many biological phenomena (e.g. growth,
reproduction, metabolism, sensation) are fundamentally multi-
plicative, and likely conform more closely to a geometric error
model (Galton, 1879; Gingerich, 2000). Packard is right that no
statistical tools should be applied uncritically, and we agree that
alternative scaling models should be considered and used when
the data demand it. Further, biologists need to have a deeper
quantitative understanding of logarithms and be aware, for
example, that standard allometric methods predict the geometric

mean response for a given value of the predictor variable.
However, we should not try to force a geometric biological
world into an arithmetic box simply because we learn to count on
our fingers. Log-transformation is entirely appropriate, indeed
necessary, for allometric analysis and many other problems in
biology.
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