OxyHemoglobin Dissociation Curve

Hemoglobin binds oxygen in the blood.

Air pressure at sealevel is 760 mm. Oxygen pressure is 21% of air pressure. The lungs, however, quickly remove oxygen into the blood.

Hemoglobin can bind O_2 at each of its four protein subunits. The O_2 molecule binds an iron atom (Fe) in the "heme" portion of each subunit.

The "S curve" of O_2 binding means that the binding of each O_2 increases the likelihood of another subunit binding O_2 .

Other small molecules such as cyanide (CN^{-}) and carbon monoxide (CO) compete for oxygen biding sites on hemoglobin. Smoking releases CO. A person smoking may release enough CO to decrease oxygen binding by 20%.

Another protein, **myoglobin**, stores oxygen in the muscle. When oxygen pressure is low (below 40 mm), myoglobin starts to release its oxygen in the blood.

Questions

- 1. What is the partial pressure of oxygen in fresh air at sealevel?
- 2. At 40 mm oxygen in the lungs, what percent of hemes are binding O2?
- 3. At what oxygen pressure (approximately) does oxygen reach 100% saturation of hemoglobin?

Carbon dioxide acts as a pH buffer in the blood.

What is pH? Acid? Base?

An acid <u>releases</u> H⁺ ions. Strong acid: HCl (hydrochloric acid) releases <u>all</u> its H⁺ HCl \rightarrow H⁺ + Cl⁻ Weak acid: Carbonic acid releases <u>some</u> of its H⁺ H₂CO₃ <===> H⁺ + HCO₃⁻

A base removes H^+ ions by releasing OH^- to react, generating water (H₂O). Strong base: NaOH (sodium hydroxide) NaOH \rightarrow Na⁺ + OH⁻

 $pH = negative \log_{10} of H^+$ concentration.

pH range = 0 to 14. H^+ range = 1 Molar to 10^{-14} Molar (Molarity = Moles per liter) Neutral pH = pH 7 Below pH 7 means acid. Above pH 7 means base.

CO₂ is an essential pH buffer in the blood.

 CO_2 is released from respiration on organic foods. As CO_2 enters the blood, it combines with H_2O to make carbonic acid, H_2CO_3 .

$CO_2 + H_2O \iff H_2CO_3 \iff H^+ + HCO_3^-$

Too much CO_2 builds up \rightarrow carbonic acid \rightarrow more H⁺, pH too low, acidosis Die in coma

Breath too fast \rightarrow CO₂ pulled out of blood \rightarrow H⁺ low, pH too high, alkalosis Die of convulsions

The Henderson-Hasselbalch Equation:

 $pH = 6.1 + log_{10} (HCO_3 / CO_2)$

Questions

- 1. Your stomach contains hydrochloric acid (HCl) to kill most bacteria. If the stomach acidity is pH 2, what is the hydrogen ion concentration?
- 2. Your normal blood pH equals pH 7.4. What fraction of the total CO2 (including ionized forms) is in the form of bicarbonate ion (HCO3-)?
- 3. Your bicarbonate:CO2 ratio is 15:1. What is your blood pH? Are you dying of coma or of convulsions?