Asmamaw, M. D., Shi, X., Zhang, L., & Liu, H. (2022). A comprehensive review of SHP2 and its role in cancer. Cellular Oncology, 45(5), 729–753. https://doi.org/10.1007/s13402-022-00698-1
Chen, Y. P., LaMarche, M. J., Chan, H. M., Fekkes, P., Garcı́a-Fortanet, J., Acker, M. G., Antonakos, B., Chen, C. H., Chen, Z., Cooke, V. G., Dobson, J. R., Deng, Z., Feng, F., Firestone, B., Fodor, M., Fridrich, C., Gao, H., Grunenfelder, D., Hao, H., . . . Fortin, P. D. (2016). Allosteric inhibition of SHP2 phosphatase inhibits cancers driven by receptor tyrosine kinases. Nature, 535(7610), 148–152. https://doi.org/10.1038/nature18621
Darian, E., Guvench, O., Yu, B., Qu, C. K., & MacKerell, A. D. (2011). Structural mechanism associated with domain opening in gain‐of‐function mutations in SHP2 phosphatase. Proteins: Structure, Function, and Bioinformatics, 79(5), 1573–1588. https://doi.org/10.1002/prot.22984
Dong, L., Han, D. W., Meng, X., Xu, M., Zheng, C., & Qin, X. (2021). Activating mutation of SHP2 establishes a tumorigenic phonotype through Cell-Autonomous and Non-Cell-Autonomous mechanisms. Frontiers in Cell and Developmental Biology, 9. https://doi.org/10.3389/fcell.2021.630712
Neel, B. G., Gu, H., & Pao, L. (2003). The ‘Shp’ing news: SH2 domain-containing tyrosine phosphatases in cell signaling. Trends in Biochemical Sciences, 28(6), 284–293. https://doi.org/10.1016/s0968-0004(03)00091-4
Nichols, R. J., Haderk, F., Stahlhut, C., Schulze, C. J., Hemmati, G., Wildes, D., Tzitzilonis, C., Mordec, K., Marquez, A., Romero, J. M., Hsieh, T., Zaman, A., Olivas, V., McCoach, C. E., Blakely, C. M., Wang, Z., Kiss, G., Koltun, E. S., Gill, A. L., . . . Bivona, T. G. (2018). RAS nucleotide cycling underlies the SHP2 phosphatase dependence of mutant BRAF-, NF1- and RAS-driven cancers. Nature Cell Biology, 20(9), 1064–1073. https://doi.org/10.1038/s41556-018-0169-1
Shen, D., Chen, W., Zhu, J., Wu, G., Shen, R., Xi, M., & Sun, H. (2020). Therapeutic potential of targeting SHP2 in human developmental disorders and cancers. European Journal of Medicinal Chemistry, 190, 112117. https://doi.org/10.1016/j.ejmech.2020.112117
Song, Y., Zhao, M., Zhang, H., & Yu, B. (2022). Double-edged roles of protein tyrosine phosphatase SHP2 in cancer and its inhibitors in clinical trials. Pharmacology & Therapeutics, 230, 107966. https://doi.org/10.1016/j.pharmthera.2021.107966
Taylor, A. M., Williams, B. R., Giordanetto, F., Kelley, E. H., Lescarbeau, A., Shortsleeves, K., Tang, Y., Walters, W. P., Arrazate, A., Bowman, C. M., Brophy, E., Chan, E., Deshmukh, G., Greisman, J. B., Hunsaker, T., Kipp, D. R., Lopez-Larrocha, P. S., Maddalo, D., Martin, I., . . . Willmore, L. (2023). Identification of GDC-1971 (RLY-1971), a SHP2 inhibitor designed for the treatment of solid tumors. Journal of Medicinal Chemistry, 66(19), 13384–13399. https://doi.org/10.1021/acs.jmedchem.3c00483
Wang, Q., Zhao, W., Fu, X., & Zheng, Q. (2020). Exploring the allosteric mechanism of SRC Homology-2 Domain-Containing protein Tyrosine phosphatase 2 (SHP2) by molecular dynamics simulations. Frontiers in Chemistry, 8. https://doi.org/10.3389/fchem.2020.597495