Intriguingly, most KRAS-driven cancers are caused by missense mutations in very specific sites: G12, G13, and G61. Glycines in positions 12 and 13 are located in the and the P-loop of KRAS, a region responsible for GTP binding and proper hydrolysis. G61 is positioned in the Switch II part, which is essential for interacting with effector proteins. Since all three of these hotspots are exposed on the surface of KRAS, mutations in these sites lead to significant changes in protein-NTP and protein-protein interactions. This KRAS mutation causes a rotation in the histidine-95 side chains which leaves His95, Tyr96, and Gln99 in a compromised position that results in a that is hidden between the cysteine-12 side chain and the Switch II. Interactions with the pocket have negative impacts on oral bioavailability and overall decrease flux and clearance rates. The ARS-1620 scaffold can help inhibit the formation of the cryptic pocket, however, when tested on rodents, it had low bioavailability and very high clearance. Thus, ARS-1620 was soon ruled out as a KRAS inhibitor for in vivo systems. AMG510 was discovered because the new angle of the His95 side chain creates a less stable hydrogen bond with N1 of the GDP-bound unit. This lack of stability causes a significant loss in functional activity and strongly blocks the N1 position.
V. References
Buhrman, G., Holzapfel, G., Fetics, S., & Mattos, C. (2010). Allosteric modulation of Ras positions Q61 for a direct role in catalysis. Proceedings of the National Academy of Sciences of the United States of America, 107(11), 4931. DOI: 10.1073/pnas.0912226107. Bunda, S., Heir, P., Srikumar, T., Cook, J. D., Burrell, K., Kano, Y., Lee, J. E., Zadeh, G., Raught, B., & Ohh, M. (2014). Src promotes GTPase activity of Ras via tyrosine 32 phosphorylation. Proceedings of the National Academy of Sciences of the United States of America, 111(36), E3785. DOI: 10.1073/pnas.140655911.
Canon, J., Rex, K., Saiki, A. Y., Mohr, C., Cooke, K., Bagal, D., Gaida, K., Holt, T., Knutson, C. G., Koppada, N., Lanman, B. A., Werner, J., Rapaport, A. S., San Miguel, T., Ortiz, R., Osgood, T., Sun, J.-R., Zhu, X., McCarter, J. D., … Lipford, J. R. (2019). The clinical KRAS(G12C) inhibitor AMG 510 drives anti-tumour immunity. Nature, 575(7781), 217–223. DOI: 10.1038/s41586-019-1694-1.
Chen, J., Zeng, Q., Wang, W., Hu, Q., & Bao, H. (2022). Q61 mutant-mediated dynamics changes of the GTP-KRAS complex probed by Gaussian accelerated molecular dynamics and free energy landscapes. RSC Advances, 12(3), 1742. DOI:10.1039/d1ra07936k.
Fink, J. C., Landry, D., & Webb, L. J. (2024). Probing the Electrostatic Effects of H-Ras Tyrosine 32 Mutations on Intrinsic GTP Hydrolysis Using Vibrational Stark Effect Spectroscopy of a Thiocyanate Probe. Biochemistry, 63(14), 1752–1760. DOI: 10.1021/acs.biochem.4c00075.
Hall, B. E., & Nassar, N. (2002). The structural basis for the transition from Ras-GTP to Ras-GDP. Proceedings of the National Academy of Sciences, 99(19), 12138-12142. DOI: 10.1073/pnas.192453199.
Janakiraman, M., Vakiani, E., Zeng, Z., Pratilas, C. A., Taylor, B. S., Chitale, D., Halilovic, E., Wilson, M., Huberman, K., Ricarte Filho, J. C., Persaud, Y., Levine, D. A., Fagin, J. A., Jhanwar, S. C., Mariadason, J. M., Lash, A., Ladanyi, M., Saltz, L. B., Heguy, A., . . . Solit, D. B. (2010). Genomic and biological characterization of exon 4 KRAS mutations in human cancer. Cancer Research, 70(14), 5901. DOI: 10.1158/0008-5472.CAN-10-0192.
Lanman, B. A., Allen, J. R., Allen, J. G., Amegadzie, A. K., Ashton, K. S., Booker, S. K., Chen, J. J., Chen, N., Frohn, M. J., Goodman, G., Kopecky, D. J., Liu, L., Lopez, P., Low, J. D., Ma, V., Minatti, A. E., Nguyen, T. T., Nishimura, N., Pickrell, A. J., … Cee, V. J. (2020). Discovery of a Covalent Inhibitor of KRASG12C (AMG 510) for the Treatment of Solid Tumors. Journal of Medicinal Chemistry, 63(1), 52–65. https://doi.org/10.1021/acs.jmedchem.9b01180
Pantsar, T. (2020). The current understanding of KRAS protein structure and dynamics. Computational and Structural Biotechnology Journal, 18, 189–198. DOI: 10.1016/j.csbj.2019.12.004.
Weng, C.; Faure, A. J.; Escobedo, A.; Lehner, B. The Energetic and Allosteric Landscape for KRAS Inhibition. Nature 2023. DOI: 10.1038/s41586-023-06954-0.
Winzker, D. M., Friese, D. A., Koch, D. U., Janning, D. P., Ziegler, D. S., & Waldmann, H. (2020). Development of a PDEδ‐Targeting PROTACs that Impair Lipid Metabolism. Angewandte Chemie (International Ed. in English), 59(14), 5595. DOI: 10.1002/anie.201913904.
Zhu, G., Pei, L., Xia, H., Tang, Q., & Bi, F. (2021). Role of oncogenic KRAS in the prognosis, diagnosis and treatment of colorectal cancer. Molecular Cancer, 20(1), 143. https://doi.org/10.1186/s12943-021-01441-4
Back to Top