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In this project we begin by considering the differential equation 

𝑓(𝑛) = −𝑓 for a fixed 𝑛. We use the so-called power series method 
to identify 𝑛 solutions to this differential equation. These functions 
are called the 𝑛-trigonometric functions (thus, sine and cosine are 2-
trigonometric functions). In this project we study geometric and 
analytic properties of the 𝑛-trigonometric functions. 
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To find closed forms for the 𝑛-trigonometric functions, we began by 

considering the solution space of the differential equation𝑓(𝑛) = −𝑓. 
Using the power series method, we found that the solutions of 

𝑓(𝑛) = −𝑓 are linear combinations of the 𝑛-trigonometric functions: 
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−
𝑘𝜋𝑖
𝑛 ∙ 𝑛𝑡𝑘 ,

𝑛−1

𝑘=0

 

where 𝑐0, … , 𝑐𝑛−1 are constants. We were also able to obtain a 
generalization of Euler’s formula: 
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For the principal 𝑛-trigonometric function, we were able to obtain 
the closed form expression 
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from which closed forms for the nonprincipal functions may be 
obtained. We omit those here. Note that the closed form for 𝑛𝑡0 is 
an average of exponential functions; for example, for 3𝑡0 we have 
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Because both the familiar trigonometric functions and the hyperbolic 
functions share a close relationship with the exponential function, we 
can express the 𝑛 -trigonometric functions in terms of familiar 
functions. For example, for 𝑛 divisible by 4 we have  
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Because of the two-dimensionality of complex variables, it is 
impossible to visualize complex-valued functions in the familiar 
graphical way. Instead, we rely on representations that describe the 
images of regions of the complex plane under a given complex-valued 
function. For the 𝑛-trigonometric functions, our work is simplified by 
the fact that they satisfy a symmetry property; we need only consider 
the image of certain portions of the complex plane to obtain the 
range of the function. The example maps that follow are all plots for 

4𝑡0 𝑧 = 
(−1)𝑗

4𝑗 !

∞

𝑗=0

𝑧4𝑗 . 

Furthermore, because 4𝑡0  has a convergent power series 
expansion, it is conformal (angles are preserved). Hence, we note that 
there is a “wrapping” around the real line, evidenced by the image of 
the real-line under 4𝑡0: 

Because of the symmetry property, however, 𝑛𝑡0 is multivalued, and 
so we require a Riemann surface to unambiguously define its inverse. 
We determined experimentally the fundamental region for 4𝑡0 to be 
approximately as follows: 

Complex Maps and Riemann Surfaces 

4𝑡0
 

Definition: A generalized hypergeometric function is a function that 
may be expressed as a power series where the ratios of successive 
coefficients is a rational function. Using rising factorial notation, we 
may express this as 

𝑝𝐹𝑞 𝑎1, … , 𝑎𝑝; 𝑏1, … , 𝑏𝑞; 𝑧 ≔ 
𝑎1 𝑗 … 𝑎𝑝 𝑗
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Theorem: The 𝑛 -trigonometric functions may be expressed as 
generalized hypergeometric functions as follows: 

𝑛𝑡𝑘 𝑧 = 0𝐹𝑛−1 ;
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Generalized hypergeometric functions have numerous connections 
with number theory. In particular, they have an interesting relationship 
with continued fractions and generalizations of continued fractions 
called G-continued fractions. For example, using the properties of 

0𝐹1 we can obtain the continued fraction expansion of Gauss for 
tangent: 

tan 𝑧 =
𝑧

1 −
𝑧2
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𝑧2

7 −⋱

 . 

Our goal in expressing 𝑛 -trigonometric functions as generalized 
hypergeometric functions is to exploit some of the well-studied 
properties of the latter. 

Closed Form Expressions 
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Figure 2. Approximate 
fundamental regions for 

4𝑡0. The area in green 
maps to the entire 
complex plane, as will 
the areas shaded in gray. 
The blue line maps to 
the real line.  
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Introduction 

For a complex-valued function 𝑓  analytic in the unit disk, if 

𝑓′ 0 = 𝑓 3 0 = 𝑓 5 0 = ⋯ = 0, then 𝑓 is an even function. This 
is apparent from the Taylor expansion 

𝑓 𝑧 = 𝑓 0 +
𝑓 2 (0)

2!
𝑧2 +
𝑓 4 (0)

4!
𝑧4 +⋯ ; 

since each of the summands has even power, we get an even 
function. In particular, the complex cosine function is even: 

𝑓 𝑧 = cos 𝑧 =  
(−1)𝑗

2𝑗 !
𝑧2𝑗 = cos (−𝑧)∞

𝑗=0 . If we differentiate 

termwise we find the familiar pattern of differentiation: 
 

𝑓′(𝑧) = −sin (𝑧) 𝑓 3 𝑧 = sin (𝑧) 

𝑓′′ 𝑧 = −cos (𝑧) 𝑓 4 𝑧 = cos (𝑧) 
 

Note that cosine satisfies the differential equation 𝑓′′(𝑧) = −𝑓. 

Notice that in the Taylor series for cosine, only  even powers of 𝑧 

appear. We can construct solutions to 𝑓(3) = −𝑓 from a Taylor series 
where the only powers that appear are multiples of three.  We 
construct the series as follows: 
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Note from the power series for 3𝑡0 that if we take derivatives, then 
we cycle through multiples of 3𝑡1 and 3𝑡2. Additionally, 3𝑡0 has 
a property of symmetry, with 
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The functions 3𝑡1 and 3𝑡2 are also symmetric in this fashion. In 
the general setting, we can define analytic functions possessing 
similar properties for any natural number 𝑛 ≥ 1  using similar 
methods: 
 
Definition: For a natural number 𝑛, we define the principal 𝒏-
trigonometric function by 

𝑛𝑡0(𝑧) ≔ 
(−1)𝑗

𝑛𝑗 !
𝑧𝑛𝑗 ,

∞
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and we define the nonprincipal  𝒌th 𝒏–trigonometric function by  

𝑛𝑡𝑘 𝑧 ≔ 𝑒
𝑘𝜋𝑖/𝑛 

(−1)𝑗
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with 𝑘 = 1, 2, … , 𝑛 − 1. 
 𝑛𝑡0 𝑧 =
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Figure 1. An region and its image under 4𝑡0. The colors and angles  
of the first graph are preserved under 4𝑡0. 


