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Introduction

For a complex-valued function f analytic in the unit disk, if
£'(0) = £f3)(0) = FB)(0) = --- = 0, then f is an even function. This
is apparent from the Taylor expansion
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since each of the summands has even power, we get an even
function. In particular, the complex cosine function is even:

f(z) =cos(z) = Z;":O((_ZBIJZZJ' =cos(—z) . If we differentiate

termwise we find the familiar pattern of differentiation:

f®(2) = sin(2)
f®(2) = cos(2)

f'(z) = —sin(z)
f"(z) = —cos(z)

Note that cosine satisfies the differential equation f''(z) = —f.

Abstract

In this project we begin by considering the differential equation
f(M) = —f for a fixed n. We use the so-called power series method

to identify n solutions to this differential equation. These functions
are called the n-trigonometric functions (thus, sine and cosine are 2-

trigonometric functions). In this project we study geometric and
analytic properties of the n-trigonometric functions.

Finding n-Trig Functions

Notice that in the Taylor series for cosine, only even powers of z
appear. We can construct solutions to f(3) = —f from a Taylor series
where the only powers that appear are multiples of three. We
construct the series as follows:
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Note from the power series for 3t, that if we take derivatives, then
we cycle through multiples of 3t; and 3t,. Additionally, 3ty has
a property of symmetry, with
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The functions 3ty and 3t, are also symmetric in this fashion. In
the general setting, we can define analytic functions possessing
similar properties for any natural number n =1 using similar
methods:

Definition: For a natural number n, we define the principal n-
trigonometric function by
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and we define the nonprincipal kth n—trigonometric function by
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withk=1,2,..,n—1.

Complex Maps and Riemann Surfaces

Because of the two-dimensionality of complex variables, it is
impossible to visualize complex-valued functions in the familiar
graphical way. Instead, we rely on representations that describe the
images of regions of the complex plane under a given complex-valued
function. For the n-trigonometric functions, our work is simplified by
the fact that they satisfy a symmetry property; we need only consider
the image of certain portions of the complex plane to obtain the
range of the function. The example maps that follow are all plots for
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Figure 1. An region and its image under ,t,. The colors and angles
of the first graph are preserved under ,t,.

Furthermore, because +to has a convergent power series
expansion, it is conformal (angles are preserved). Hence, we note that
there is a “wrapping” around the real line, evidenced by the image of
the real-line under 4t;,:
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Closed Form Expressions

To find closed forms for the n-trigonometric functions, we began by

considering the solution space of the differential equationf (™ = —f.
Using the power series method, we found that the solutions of

£ = —f are linear combinations of the n-trigonometric functions:
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where ¢y, ...,Cc,,_1 are constants. We were also able to obtain a

generalization of Euler’s formula:
n—-1
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For the principal n-trigonometric function, we were able to obtain

the closed form expression
n—1
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from which closed forms for the nonprincipal functions may be

obtained. We omit those here. Note that the closed form for ¢, is
an average of exponential functions; for example, for 3ty we have
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3to(2) = 3
Because both the familiar trigonometric functions and the hyperbolic
functions share a close relationship with the exponential function, we
can express the n-trigonometric functions in terms of familiar
functions. For example, for n divisible by 4 we have
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Because of the symmetry property, however, . tq is multivalued, and
so we require a Riemann surface to unambiguously define its inverse.
We determined experimentally the fundamental region for ,t, to be
approximately as follows:

Figure 2. Approximate
fundamental regions for
4to. The area in green

57 maps to the entire
v complex plane, as will
iz the areas shaded in gray.

The blue line maps to
Vo the real line.

Generalized Hypergeometric
Functions and Ongoing Work

Definition: A generalized hypergeometric function is a function that
may be expressed as a power series where the ratios of successive
coefficients is a rational function. Using rising factorial notation, we
may express this as
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Theorem: The n -trigonometric functions may be expressed as
generalized hypergeometric functions as follows:
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Generalized hypergeometric functions have numerous connections
with number theory. In particular, they have an interesting relationship
with continued fractions and generalizations of continued fractions
called G-continued fractions. For example, using the properties of

oF1 we can obtain the continued fraction expansion of Gauss for
tangent:
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Our goal in expressing n -trigonometric functions as generalized
hypergeometric functions is to exploit some of the well-studied
properties of the latter.
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