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Abstract 
Telescopes have revealed the existence of very weak magnetic fields in the 
intergalactic medium. However, current astrophysical knowledge does not call for 
such phenomena: the intergalactic medium is charge-neutral and thus sourceless, 
and planetary and celestial magnetic fields vanish at very short distances. So the 
origin of these fields remains an open question. We investigate one possible 
explanation: that they may have been created at the end of the Inflationary Epoch. 
Early in the Universe’s history, it underwent a period of rapid exponential expansion 
called inflation. Many inflationary models predict a post-inflationary phenomenon 
called preheating. In preheating, energy from the scalar inflaton field is transferred 
into other fields as it experiences sinusoidal decay. The consequences of preheating 
have proven quite successful in enhancing the viability of inflationary models. So it 
seems plausible that preheating could have created primordial magnetic fields. To 
test this hypothesis, we wrote a lattice simulation that evolves the equations of 
motion for the inflaton, a massless scalar field, and the electromagnetic 4-potential.  

Scalar Fields and Inflationary Dynamics 
A scalar field is a function that associates a scalar value with every point in a given 
spacetime. The classic example is a temperature field defined across a room: every 
part of the room has some temperature. We can use scalar fields to analyze many 
interesting phenomena in cosmology. One such example is the theory of inflation. It 
states that, sometime between 10-33 and 10-31 seconds after the Big Bang, the 
Universe experienced extremely rapid expansion, increasing in volume by a factor 
of around 1078. Inflationary theory provides compelling solutions to many problems 
in contemporary cosmology, making it a widely accepted hypothesis. We can model 
inflation by filling the Universe with a single scalar field, called the inflaton. As an 
inhomogeneous fundamental degree of freedom, the inflaton obeys the Klein-
Gordon equation: 

We add to our model a second fundamental degree of freedom. The two fields have 
a potential of the form: 

We use the Friedmann equations to calculate the growth of the scale factor. Note 
that, for the time frames that we care about, the most convenient units of the inflaton 
are Planck masses. 

Electrodynamics and the 4-Potential 
We can define a field called the electromagnetic 4-potential that contains 
all the information about the magnetic fields of our model Universe. This 
potential is described by the electromagnetic action: 

This action is conformally invariant, which means that it will not 
independently generate the sorts of magnetic fields we wish to induce. To 
solve this problem, we will couple the 4-potential to our inflaton field. We 
use a coupling of the form: 

We can use this action to acquire the equation of motion for the 4-
potential: 

Parametric Resonance and Preheating 
Parametric resonance is a phenomenon observable both in classical and 
cosmological configurations. A common classical example is as follows: 
Imagine a child on a swing who periodically stands and squats to drive her 
motion. The frequency and amplitude of the swing’s motion will vary based 
on the child’s movement. We observe parametric resonance in coupled 
fields: parametric resonance between the inflaton and other fields drives 
preheating. We can describe parametric resonance with the Mathieu 
equation. For the    field, the Mathieu equation is given as  

     , 
where z is proportional to time, and q and Ak vary slowly with time. 

Field Initialization and Perturbations 
During inflation, the inflaton and other fields are approximately 
homogeneous. After inflation, this state of homogeneity ceases. It can be 
shown that the time-derivative of the inflaton vanishes at a homogeneous 
value of                   . By starting our simulation around this time, we 
ensure that we need not worry about large initial time-derivatives. In 
addition, inflation ceases at                     . So the phenomena we wish to 
model will appear shortly after we begin. We will also need to induce 
random perturbations in our fields. We do this in the following manner: For 
each field in our model, we generate two waves that move across the 
momentum space of our model Universe, in opposite directions. Each 
point on these waves deviates from its expected value by a small, random 
value. We transform the sum of these two fields into small 
inhomogeneities.  
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Results and Looking Ahead 
Fields that experience parametric resonance exhibit two noticeable 
characteristics. First, their variances initially increase rapidly with time and 
then remain fairly constant. And their power spectra witness a transition 
from low k-modes to high k-modes. Figure III gives our variances. As 
regards the    and    fields, the variances closely adhere to results from 
other studies. Thus, we can see that parametric resonance has taken place 
in our model. The variance for the 4-potential is slightly more peculiar, but 
its shape similarly suggests that some parametric resonance has been 
induced. Figure V gives the power spectrum for the 4-potential. As desired, 
it is dominated by high k-modes. We may conclude that, as a proof of 
concept, our hypothesis is not unviable. For further investigation, we would 
wish to more thoroughly examine the implementation of the 4-potential 
and other fields to ensure that it accurately represents our full cosmological 
knowledge. We would want also to extend the timeframe of our model 
such that it would be capable of making predictions about the modern 
state of intergalactic magnetic fields. 
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Figure I: A diagram of the 
magnetic field of the Earth. Note 
how quickly it vanishes as 
distance increases. [7.] 

Figure II: A idealized diagram of 
the inflaton’s behavior. It slowly 
decreases and then experiences 
extreme sinusoidal decay. The 
units of both axes are arbitrary. 

Figure IV: The Mathieu Stability and 
Instability Diagram. [5.] Solutions to the 
Mathieu equations are either stable 
(oscillatory) or unstable (exponential). This 
diagram shows which of these will be the 
case, given values of q and A.  

Figure III: Variances for our fields 
with respect to time. We have 
normalized our variances such 
that                                      . 
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Figure V: The power spectrum for 
the 4-potential after 55 
oscillations of the inflaton field.  
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