
Theorem 2

Let k be an even positive integer with prime factorization                            . Let

.   Then (n, x, n+k) is a triangular triple if and only if 

,                                                   , and                                           for             .
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The equation                         is one of the most famous equations in the world, due to its role in 
the Pythagorean Theorem. One generalization of this is the equation                     ,  which is well 
known because of Fermat’s Last Theorem.  Recognizing that a Pythagorean triple               
corresponds to three square numbers      ,     , and     , the last of which is the sum of the first 
two, we can examine a second way of generalizing Pythagorean triples. In particular we 
consider the question “when is the sum of two triangular numbers a triangular number?” or 
more generally, “when is the sum of two polygonal numbers a polygonal number?”  The 
answer is found parametrically, by finding polygonal triples of the form                     , where x
and n can be calculated given a value for k.  The triangular case will be covered in detail, and 
examples of the general polygonal solution will be given.

A triangular number is a natural number that can be put into the shape of an equilateral 
triangle.  The nth triangular number is denoted by       .  Examples of triangular numbers are 
shown below.

Each triangular number can be constructed by adding a row to the previous triangular number. 
For example,                        .  Each successive row is one piece longer than the previous row, 
suggesting the formula

• A positive integer triple                is a triangular triple if                          .

• Example:  

•Example:                                        . This is because the bottom two rows of       form       . So if the   

bottom k rows of            form some triangular number       , then                               .                                  

Assume                               , where                 . Then                                                          , so 

. Therefore n will be an integer exactly when 

. Since we need n to be a positive integer for (n, x, n+k) to be a  
triangular triple, we can use this congruence to find values of x and k that force n to be a 
positive integer when                               . This congruence can be solved by fixing k and using the 
prime factorization of k. Theorem 1 provides a complete description of triangular triples with 
odd k.

Triangular Triples

Triangular Numbers
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Polygonal numbers are numbers that can be represented as a regular polygon. The 

nth polygonal number of s sides is                                                 , or equivalently the 

sum of an arithmetic series of n terms with first term 1 and common difference     

. Examples of polygonal numbers are shown below. Notice that for any          , 

the shape       contains          inside of it.

Polygonal Numbers

Fix k odd. Recall that n is an integer if and only if                                                      ,           

so we start by solving this congruence.  Since by assumption k is odd, 

is an integer, so                                                                   .  Because 2 and k are 

relatively prime,                                            if and only if                                          and   

. One of x, x+1 is always even, so the former congruence is

always true. To solve the latter congruence, note that each prime power factor of k

is relatively prime, so                                         if and only if 

for                   . Because x and x+1 are relatively prime,  each congruence 

has only the solutions                                   and 

. Therefore                                          and n is an integer if and only 

if                                            for                 . But if           , then n is not positive, so for 

(n, x, n+k) to be a triangular triple we require the additional constraint that            . 

Note that                               by construction, so (n, x, n+k) is in fact a triangular triple.
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Proof of Theorem 1

A positive integer triple               is a polygonal triple if for some integer          ,

. The methods used to find triangular triples were generalized and 

used to find polygonal triples, so polygonal triples were found in the form                   

(n, x, n+k). The full solution depends on the common factors of and k, as well 

as of           and k. The solution in the simplest case is stated below. Notice that when 

s=3, this result simplifies to Theorem 1.

Polygonal Triples

2

))4()2(( 


snsn
Ps

n

2s

3

4P 4

3P 5

3P 6

3P

),,( cba 2s
s

c

s

b

s

a PPP 

545 TT

knxn TTT 

Acknowledgements
I would like to thank Professor Judy Holdener for her insights and advice throughout 
this project.  I would also like to thank the Kenyon College Summer Science program 
for providing me the opportunity to perform this research.. 

Theorem 1

Let k be an odd positive integer with prime factorization                     . Let

.   Then (n, x, n+k) is a triangular triple if and only 

if              and                                           for                  .





s

i

r

i
ipk

1

k

TT

k

kkxx
n kx 




2

)1()1(

 ir

ipx mod1or  0  si 1kx 





s

i

r

i

t ipk
1

2

k

TT

k

kkxx
n kx 




2

)1()1(

 ir

ipx mod1or  0  si 1kx   12mod12or  2  tttx

Suppose that                         . Then to generate a triangular triple, we find some x so 

that                                        and                                     . Suppose we pick

and                             . Using the Chinese Remainder Theorem or 

just by guessing, we see that                                 is the general solution to this system 

of two congruences. Since we need            , one valid choice is              . Calculating n

as in Theorem 1, we obtain              . Therefore (49, 80, 94) is a triangular triple.
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Example for Odd k

For an example using an even k, let                                 .  Then by Theorem 2, we 

must find some x satisfying                                      ,                                        , and 

.  Suppose we choose                            ,                                 , and 

.  Again, the Chinese Remainder Theorem can be used to determine 

that the solution to this system of congruences is                                       . Since

we can use this as our x. Then we can calculate n as in the statement of 

Theorem 2, giving                . Therefore (532, 999, 1132) is a triangular triple.
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Example for Even k
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Theorem 3

Let k be odd with prime factorization                     . Let           be an integer and

assume                                                          . Let                                                        . 

Then (n, x, n+k) is a polygonal triple for polygons with s sides if and only if 

,                                    , and                                                          for             .
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