Triangular and Polygonal Triples

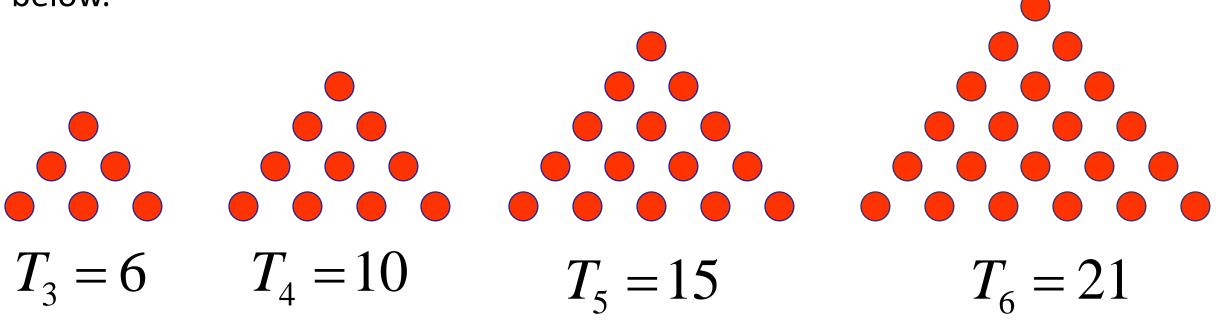
Daniel Franz, Advisor Judy Holdener
Department of Mathematics, Kenyon College, Gambier, OH 43022

Abstract

The equation $a^2 + b^2 = c^2$ is one of the most famous equations in the world, due to its role in the Pythagorean Theorem. One generalization of this is the equation $a^n + b^n = c^n$, which is well known because of Fermat's Last Theorem. Recognizing that a Pythagorean triple (a,b,c) corresponds to three square numbers a^2 , b^2 , and c^2 , the last of which is the sum of the first two, we can examine a second way of generalizing Pythagorean triples. In particular we consider the question "when is the sum of two triangular numbers a triangular number?" or more generally, "when is the sum of two polygonal numbers a polygonal number?" The answer is found parametrically, by finding polygonal triples of the form (n, x, n+k), where x and x can be calculated given a value for x. The triangular case will be covered in detail, and examples of the general polygonal solution will be given.

Triangular Numbers

A triangular number is a natural number that can be put into the shape of an equilateral triangle. The $n^{\rm th}$ triangular number is denoted by T_n . Examples of triangular numbers are shown below.



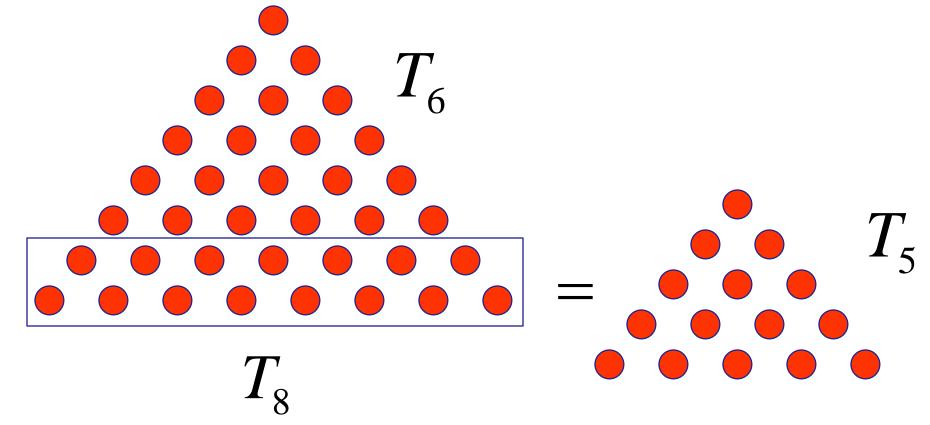
Each triangular number can be constructed by adding a row to the previous triangular number. For example, $T_5=T_4+5$. Each successive row is one piece longer than the previous row, suggesting the formula

$$T_n = 1 + 2 + 3 + ... + n = \frac{n(n+1)}{2}$$

Triangular Triples

- A positive integer triple (a,b,c) is a triangular triple if $T_a+T_b=T_c$.
- Example: $T_3 + T_5 = 6 + 15 = 21 = T_6$

•Example: $T_6+T_5=T_8=T_{6+2}$. This is because the bottom two rows of T_8 form T_5 . So if the bottom k rows of T_{n+k} form some triangular number T_x , then $T_n+T_x=T_{n+k}$.



Assume $T_n+T_x=T_{n+k}$, where $x,k\in N$. Then n(n+1)+x(x+1)=(n+k)(n+k+1), so x(x+1)=2nk+k(k+1). Therefore n will be an integer exactly when $x(x+1)\equiv k(k+1)\operatorname{mod}(2k)$. Since we need n to be a positive integer for (n,x,n+k) to be a triangular triple, we can use this congruence to find values of x and k that force n to be a positive integer when $T_n+T_x=T_{n+k}$. This congruence can be solved by fixing k and using the prime factorization of k. Theorem 1 provides a complete description of triangular triples with odd k.

Theorem 1

Let k be an odd positive integer with prime factorization $k=\prod_{i=1}^s p_i^{r_i}$. Let $n=\frac{x(x+1)-k(k+1)}{2k}=\frac{T_x-T_k}{k} \ . \ \ \text{Then } (n,x,n+k) \text{ is a triangular triple if and only}$ if x>k and $x\equiv 0$ or -1 $\pmod{p_i^{r_i}}$ for $1\leq i\leq s$.

Proof of Theorem 1

Fix k odd. Recall that n is an integer if and only if $x(x+1) \equiv k(k+1) \pmod{2k}$ so we start by solving this congruence. Since by assumption k is odd, (k+1)/2 is an integer, so $k(k+1) \equiv 2k \frac{(k+1)}{2} \equiv 0 \pmod{2k}$. Because 2 and k are relatively prime, $x(x+1) \equiv 0 \pmod{2k}$ if and only if $x(x+1) \equiv 0 \pmod{2}$ and $x(x+1) \equiv 0 \pmod{2k}$. One of x, x+1 is always even, so the former congruence is always true. To solve the latter congruence, note that each prime power factor of k is relatively prime, so $x(x+1) \equiv 0 \pmod{k}$ if and only if $x(x+1) \equiv 0 \pmod{p_i^{n_i}}$ for $1 \le i \le s$. Because x and x+1 are relatively prime, each congruence $x(x+1) \equiv 0 \pmod{p_i^{n_i}}$ has only the solutions $x \equiv 0 \pmod{p_i^{n_i}}$ and $x \equiv -1 \pmod{p_i^{n_i}}$. Therefore $x(x+1) \equiv 0 \pmod{2k}$ and n is an integer if and only if $x \equiv 0$ or $x \equiv 0 \pmod{p_i^{n_i}}$ for $x \equiv 0 \pmod{p_i^{n_i}}$ for x

Theorem 2

Let k be an even positive integer with prime factorization $k=2^t\prod_{i=1}p_i^{r_i}$. Let $n=\frac{x(x+1)-k(k+1)}{2k}=\frac{T_x-T_k}{k}$. Then (n,x,n+k) is a triangular triple if and only if x>k, $x\equiv 2^t$ or 2^t-1 $\pmod{2^{t+1}}$, and $x\equiv 0$ or -1 $\pmod{p_i^{r_i}}$ for $1\leq i\leq s$.

Example for Odd k

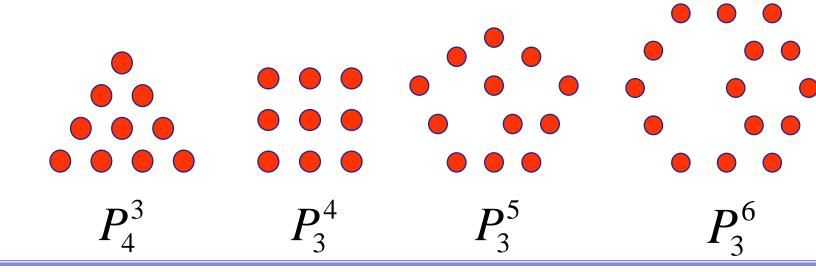
Suppose that $k=45=3^2\cdot 5$. Then to generate a triangular triple, we find some x so that $x\equiv 0$ or $-1\pmod 9$ and $x\equiv 0$ or $-1\pmod 5$. Suppose we pick $x\equiv -1\pmod 9$ and $x\equiv 0\pmod 5$. Using the Chinese Remainder Theorem or just by guessing, we see that $x\equiv 35\pmod {45}$ is the general solution to this system of two congruences. Since we need x>k, one valid choice is x=80. Calculating n as in Theorem 1, we obtain n=49. Therefore (49, 80, 94) is a triangular triple.

Example for Even k

For an example using an even k, let $k = 600 = 2^3 \cdot 3 \cdot 5^2$. Then by Theorem 2, we must find some x satisfying $x \equiv 0$ or $-1 \pmod 3$, $x \equiv 0$ or $-1 \pmod 25$, and $x \equiv 8$ or $7 \pmod 16$. Suppose we choose $x \equiv 0 \pmod 3$, $x \equiv -1 \pmod 25$, and $x \equiv 7 \pmod 16$. Again, the Chinese Remainder Theorem can be used to determine that the solution to this system of congruences is $x \equiv 999 \pmod 1200$. Since 999 > 600 we can use this as our x. Then we can calculate n as in the statement of Theorem 2, giving n = 532. Therefore (532, 999, 1132) is a triangular triple.

Polygonal Numbers

Polygonal numbers are numbers that can be represented as a regular polygon. The n^{th} polygonal number of s sides is $P_n^s = \frac{n((s-2)n-(s-4))}{2}$, or equivalently the sum of an arithmetic series of n terms with first term 1 and common difference s-2. Examples of polygonal numbers are shown below. Notice that for any s>2, the shape P_n^s contains P_{n-1}^s inside of it.



Polygonal Triples

A positive integer triple (a,b,c) is a polygonal triple if for some integer s>2, $P_a^s+P_b^s=P_c^s$. The methods used to find triangular triples were generalized and used to find polygonal triples, so polygonal triples were found in the form (n,x,n+k). The full solution depends on the common factors of s-2 and k, as well as of s-4 and k. The solution in the simplest case is stated below. Notice that when s=3, this result simplifies to Theorem 1.

Theorem 3

Let k be odd with prime factorization $k=\prod_{i=1}^r p_i^{r_i}$. Let s>2 be an integer and assume $\gcd(s-2,k)=\gcd(s-4,k)=1$. Let $n=\frac{x(x+1)-k(k+1)}{2k}=\frac{T_x-T_k}{k}$. Then (n,x,n+k) is a polygonal triple for polygons with s sides if and only if x>k, $x\equiv k\pmod{s-2}$, and $x\equiv 0$ or $1-2(s-2)^{-1}\pmod{p_i^{r_i}}$ for $1\leq i\leq t$.

<u>Acknowledgements</u>

I would like to thank Professor Judy Holdener for her insights and advice throughout this project. I would also like to thank the Kenyon College Summer Science program for providing me the opportunity to perform this research..

References

- 1. Sastry, K.R.S., "Pythagorean Triangles of the Polygonal Numbers," *Math. Comput. Ed.* **27** (1993), no. 2, 135-142.
- 2. Scheffold, E., "Pythagorean Triples of Polygonal Numbers," *The American Mathematical Monthly* **108** (2001), no. 3, 257-258.