
We represent these inequalities with the following diagram:

We consider a real-world example and show that certain 
unsharable relationships are expressed in nature.

Considering our systems to be spin-1/2 particles, we rewrite 
H as:

In quantum mechanics, the eigenvalues of the total spin 
operator are:

We then rewrite Hmn in terms of total spin operators to find 
that the largest eigenvalue for a given Hmn is,

and so                               .

Method: We considered the following type of systems:

S1 = {A1,B1}, S2 = {A2,B2}, where A,B = {+, –}

and considered states where A-A joint observables always 
agree, A-B or B-A joint observables agree with probability p, 
B-B joint observables agree with probability q, and any 
single observation returns + or – with equal probability.

We show that certain p-q states are unsharable, while others 
are arbitrarily sharable.

Method:  We considered sharability of only the 
simplest, most symmetric quantum states, namely, 
Werner states. These are the rotationally symmetric 
two qubit density operators. We can write the Werner 
states in a basis of triplet and singlet states:

Here is the form of the general Werner State:

Each Werner state is uniquely characterized by its 
value of λ.

A Werner state is sharable if there exists a density 
operator whose A-B subsystems are described by that 
Werner state.

ρAB is then said to be 1-2 sharable
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Abstract: The mysterious phenomenon of quantum entanglement has puzzled physicists for decades. Two entangled 
particles behave in highly correlated ways -- an almost "telepathic" connection that can extend over any distance. In 
quantum mechanics, no third particle is able to tap into this link and share in the entanglement relationship. This fact is 
called monogamy of quantum entanglement. In this talk, we will explore weaker degrees of entanglement that may be 
shared among up to three, four, or N particles. 

The ideas of sharability and monogamy are clearer if we approach them in a more general way, using a simple framework 
that describes any sort of correlated behavior, including that of entangled quantum particles. The monogamy of quantum 
entanglement does not depend on the detailed mathematics of quantum theory, but can be deduced directly from the 
observed correlations of pairs of particles. 

Quantum  Sharability: A two-system quantum state Ψ 
is n-m sharable if and only if there exists a density 
operator ρ describing the entourage of (n+m) sub-systems 
such that reduction of ρ to two sub-systems always 
results in Ψ.

General Sharability: A two-system general state Ψ
is n-m sharable if and only if there exists a set of joint 
probabilities, obeying  rules of probability and locality.

Introduction: We will explore the principle of Sharability within quantum mechanics and then in a more general 
framework. Sharability is a type property of any state that describes two subsystems. 

Within quantum mechanics, we describe mixed states of systems using density operators. These abstract entities are 
realized by understanding them to be spin-1/2 systems.

Within general sharability, we consider systems made of several binary observables. The example of binary observables we 
use to explain general sharability is “yes or no questions”.

Results: Sharability of Werner States is an interesting and 
significant property because the set of Werner States can be 
divided into sharability classes. These classes range from 
including states which are not sharable at all, as in the singlet 
state, to including states which are arbitrarily sharable, as in 
the completely mixed identity operator.

Results: Sharability of General States is an interesting and 
significant property because it places restrictions on what 
statistical relationships are possible of systems in general. 
The beauty of this result is that these restrictions are based 
only on our general framework and locality.

General Framework:

•Outcome: result of an observation, distinguishable from     
other results (e.g. +, –,a,b}

•Observable: set of outcomes (e.g. A = {+, –})

•System: set of observables 
(e.g. S = {A,B,C} = {{+A, – A},{+B, – B},{+C, – C}})

•State: set of probability distributions, with one distribution 
for each joint observable (example below)

(also for A1-A2, B1-A2, B1-B2)

Joint Observables:
Two Systems

Joint Observables:
Three Systems

a+b = ½ p
c+d= ½ (1-p)
e+f= ½ (1-p)
h+g= ½ p

a+e = ½ q
b+f= ½ (1-q)
c+g= ½ (1-q)

d+h= ½ q

Locality

(each 3-way joint 
observable contributes 

inequalities)

Rule of 
probability
0 ≤ prob ≤ 1

If sharable, 
we can construct

q ≤ 1
q ≥ 1-2p
q ≥ 2p-1

Leads to three
Inequalities

QM gives us probabilities of agreement:
P(agree) = sin2(χ/2)
P(A-A agree) = sin2(π/2) = 1
P(A-B agree) = P(A-B agree) = sin2(θ/2) = p
P(B-B agree) = sin2(φ/2) = sin2(θ - π/2) = q

Using trig identities, we can write q in 
terms of p as:

q = (2p-1)2

As seen above, we have shown that there 
exist states in nature that are unsharable, 
and their unsharability can be derived 
simply on account of their observed 
statistical relationships.

Stern-Gerlach

P(x|X) 

= Σ P(xy|XY)y

The A-B subsystems of a whole-system density operator ρ
will be maximally sharable when each subsystem is as close 
as possible to the singlet state while ρ is a true density 
operator.

A measure of closeness of each A-B subsystem to the 
singlet state is a projection, H, of ρ into each singlet state.

Two useful corollaries we proved:

•The pure state which has the greatest expectation of H will 
be the eigenstate(s) with largest eigenvalue. We call this 
space the ceiling space.
•The density operator which maximizes the expectation of 
H is an even mixture of pure states in the ceiling space.

With these, we find a maximally m-n sharable Werner state 
by finding the largest eigenvalue of Hmn.

Quantum Sharability
General Sharability


