Harmonic Measure Distribution Functions in Complex Domains Kevin Gerstle '11, Marie Snipes Department of Mathematics, Kenyon College

Abstract:

Brownian particles follow a mathematical model of random movement in some fixed number of dimensions. We start a Brownian particle in some two-dimensional domain and allow the particle to move until it first reaches the boundary of its domain. In doing this, we can find the probability that the particle will hit the boundary of its domain within a set distance *r* from its starting point. If we find these probabilities for different values of *r*, we can then construct the harmonic measure distribution function (*h*-function) as a function of *r* for the particle in that domain. These functions provides interesting information about the size and shape of their domains.

In this project, we have found various complex differentiable functions that were used to construct *h*-functions for several types of domains. We have also developed a program that produces these functions for different domains by simulating movement of Brownian particles. Finally, we have explored a special type of domain called circle domains which have particularly interesting *h*functions. In analyzing circle domains with one inner boundary arc, we learned that decreasing the radius of that arc will increase the probability that a Brownian particle will first hit that arc.

Definition of H-Functions:

We first start a Brownian particle at point z₀ in a domain and let it run until hits the boundary of the domain (see Figure 1). We know it will hit the boundary eventually with probability 1. We then can set a distance *r* and consider the probability the particle will first hit the boundary within distance r from the basepoint z_0 (see Figure 2).

Z0

Figure 1: Brownian motion in rectangle

Figure 2: Boundary section of interest in rectangle

In other words, what is the probability a Brownian particle starting at z₀ will first hit the boundary in the red section? By considering these probabilities as a function of the radius r, we find the harmonic measure distribution function, or *h*-function, for this basepoint in this domain.

H-Function Properties:

•All go from 0 towards 1 (reaching 1 in the case of a bounded domain). •All h-functions are nondecreasing. •If the boundary of the domain or the position of the basepoint changes, a different h-function will be produced.

The boundaries of these domains each consists of an outer circle along with inner arcs that are all centered around the basepoint.

Acknowledgements:

I would like to thank Dr. Marie Snipes for advising me in my study of harmonic measure distribution functions. I would also like to thank the Kenyon Mathematics Department and the Kenyon Summer Science Program for giving me the opportunity to carry out this research. Finally, I would like to thank Pi Mu Epsilon for allowing me to present my research at their annual conference in August, 2010.

References:

[1] SAFF, E. B., AND SNIDER, A. D. Fundamentals of Complex Analysis with Applications to Engineering and Science. – Prentice Hall, Upper Saddle River, New Jersey, 2003.

[2] SNIPES, M. A., AND WARD, L. A. Realizing step functions as harmonic measure distributions of planar domains. Ann. Acad. Sci. Fenn. Math. 30, 2 (2005), 353-360.