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Abstract 
The current detailed picture of  the Cosmic Microwave Background (CMB) and our observations of  the large-
scale structure of  the Universe give measurable hints about how our Universe formed. The theory of  
cosmological perturbations is a promising explanation for the origin of  structure in the context of  inflationary 
cosmology. This research looks at how the small quantum fluctuations due to the Bunch-Davies vacuum state 
at the outset of  inflation could source the clusters and galaxies that exist throughout the Universe. Key to 
tracking these perturbations is the evolution of  the cosmological scale factor, a(t), through the inflationary 
epoch. This is the first objective of  this research: to evolve the scale factor with potential-driven inflation from 
multiple scalar fields. This model is referred to as staggered inflation, or N-flation. The combined potential 
energy from the fields provides the energy needed to create the near-exponential growth of  the Universe. To 
mirror theoretical expectations the scale factor must increase by a factor of  e60 in our simulations of  inflation. 
The second objective is to evolve the perturbations. To test the viability of  the models, we perform spectral 
analysis of  the perturbation modes. This results in a power spectrum of  curvature perturbations that can be 
used in comparisons with data from observations of  the CMB.!

FLRW METRIC 
The system of  measurement used to describe the distance between points in the Universe is called a metric. 
The metric used in our models is the Friedmann-Lemaître-Robertson-Walker (FLRW) metric. The most general 
form of  this metric is!

however, we consider the case in which the Universe is spatially flat. This simplifies the line element of  the 
FLRW metric to!

The features of  the metric necessarily reflect those of  cosmological principle, which states that our Universe is 
homogeneous and isotropic. There is no special position or preferential direction and that manifests itself  in 
the FLRW metric in which the scale factor depends on time alone and scales each of  the three spatial 
dimensions equally.!

Equations of Motion 
The scale factor, a(t), is time-dependent, and since it scales the spatial distances in the Universe, knowing how 
it changes with time explains how Universe evolves. The equations of  motion for a(t) are derived from general 
relativity (first done by Alexander Friedmann). The first Friedmann equation is!

The inflatons are time-dependent; different fields will dominate the energy density at different times during 
inflation. With the scale factor evolution dependent on the energy density and the energy density evolution 
dependent on the fields, we are left with these coupled differential equations that we can evolve numerically:!

Perturbations 
We consider scalar perturbations that are a linear-order expansion about the FLRW metric.!

In the most general case of  scalar perturbation theory there are four free parameters. By choosing the 
Newtonian gauge and considering models with no anisotropic stress, we reduce the description of  the 
perturbations to a single variable, Q, the Newtonian potential, and incorporate another equation of  motion 
into our simulations, !

The subscript index, I, indicates that there is a component of  the Newtonian potential that corresponds to 
each inflaton. Additionally, each QI is decomposed by a Fourier transform into many modes with 
corresponding wavenumbers, k. The evolution of  the perturbations is dependent on both the scale factor and 
the inflatons, however, the evolution of  the scale factor and inflatons is unaffected by perturbations. Each 
perturbation mode is initialized to the conditions subscribed by the Bunch-Davies vacuum state. The Bunch-
Davies initialization for each of  the modes of  the perturbations is!

To interpret the effect of  perturbations in our models of  the Universe, we look at the spatial curvature 
perturbation, R:!

The decomposition of  the second-order differential equations of  motion for 
the scale factor, inflatons and perturbations into a set of  coupled first-order 
equations enables us to solve them numerically. We employ the fifth-order 
Cash-Karp Runge-Kutta integration technique which has an adaptive time-
step. As the program steps through time, the inflatons decay and drop out one 
by one as seen in Figure 4. Below are the resultant power spectra of  curvature 
perturbations at the end of  inflation simulations with different numbers of  
inflatons.!

Future Work 
Our models must agree with the observations of  the CMB. Therefore, we must create an angular power 
spectrum for our models. This will tell us if  our effective model of  staggered inflation would leave the same 
imprint of  anisotropies on the CMB that we observe.!

Figure 2: Temperature 

fluctuations, !T/T, in the 

CMB are on the order of 

10-5. These provide 

important information on 

the dynamics of the early 

Universe. (NASA, 2010) 

Figure 3: The angular power 

spectrum of the CMB from the 

7-year WMAP results.    

(NASA, 2010)  
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Figure 4: Inflatons Decay 
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Figures 5, 6, & 7: 

Spectrum of 

curvature 

perturbations for 

3, 5, and 10 

inflatons (from L 

to R)  

Acknowledgments 

The funding for this research was provided by the Summer Science Scholars program at Kenyon College. I owe 
many thanks to Professor Giblin for his guidance and encouragement. Additionally, I would like to thank our 
collaborators Thorsten Battefeld (Princeton; Göttingen) and Diana Battefeld (Helsinki; Göttingen).!

References 
1)! B. A. Basset, S. Tsujikawa and D. Wands, “Inflation dynamics and reheating,” Rev. Mod. Phys. 78, 537 (2006) [arXiv:astro-ph/0507632].!
2)!D. Battefeld and T. Battefeld, “Multi-Field Inflation on the Landscape,” JCAP 0903, 027 (2009) [arXiv:0812.0367 [hep-th]].!
3)! E. Komatsu et al., “Seven-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Cosmological Interpretation” [arXiv:1001.4538 

[astro-ph.CO]].!
4)! A. Taruya and Y. Nambu, “Cosmological perturbation with two scalar fields in reheating after inflation,” Phys. Lett. B 428, 37 (1998) [arXiv:gr-qc/

9709035].!

Summer Science 

2010!

Because our models of  inflation are potential-driven and invoke many 
fields, the energy density, "(t), appearing in the Friedmann equation is a 
sum of  the total energy of  each scalar field. Each field, referred to as an 
inflaton, has energy density, "i :!

Figure 1: Inflaton potential . 
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