
In our particular model we are not evolving the Higgs Field in isolation but have 
coupled it to a fluid to see the effects of interactions with other particles in the 
universe. To model this interaction we will treat the particles in the universe as a 
fluid. In order to simulate the phase transition we need: a potential energy function 
for the field, the Klein–Gordon equation with a term that couples to the fluid, the 
Navier-Stokes equation with a term that couples to the field, and the continuity 
equation to evolve the fluid energy density. Note that in the simulations we did not 
include expansion, for the time scale of expansion was many orders of magnitude 
greater than the time scale of the simulations. Throughout this project we used a toy 
model for the potential given by a quadratic potential with a linear perturbation [1]: 

Note that λ and ε are model dependent parameters and ϕ is our field so ϕ0 is the initial 
field value. The Klein-Gordon equation with the fluid coupling term (underlined), is 
used to evolve our field [1,2,3,5]: 

Note that ζ is the fluid-field coupling constant and u is the fluid velocity. A full 
relativistic treatment of the Navier-Stokes equation is very difficult to evolve without 
making certain assumptions about the symmetry of the problem. To avoid 
unnecessary symmetry assumptions we used the Navier-Stokes equations for a non-
relativistic irrotational incompressible fluid, with no viscous force. The added 
coupling term is underlined [3,5]: 

 Note that η is the kinematic viscosity of the fluid and the pressure P is given by the 
equation of state P=wρ where w = 1/3 and ρ is the energy density of the fluid. Using 
a non-relativistic Navier Stokes equation is a fine assumption because the maximum 
velocity of the fluid (around 0.2c) is within the non-relativistic regime. To evolve the 
energy density we just used the continuity equation: 

The bubble was nucleated with a  profile according the following equation at the start 
of the simulation (Figure 2) [1]: 

Here r is the spherical coordinate of the point and R0 is the initial bubble radius. 
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The universe has undergone several phase transitions during its evolution. One, 
called the electroweak phase transition, occurs at an energy scale of 100 GeV when 
the age of the universe is 10-12 s. During this phase transition the fermions that make 
up the Universe are given mass. We are able to model this phase transition as a first 
order phase transition by evolving the Higgs field, a scalar field that mediates this 
phase transition. In order to explore this phase transition we have coupled the 
incompressible non-relativistic Navier-Stokes equations to the Higgs field. These 
fluid equations model the particles that are present in the universe at the time of the 
phase transition. We have written a program that evolves the Higgs field and the 
Navier-Stokes equations on a 3-dimensional lattice using a Runge-Kutta 2nd order 
method of integration. 

Abstract 

All known interactions between particles are governed by the four fundamental 
forces: electro-magnetic, weak, strong, and gravitational. As we look back to the 
early universe, there is a time at which these four forces are indistinguishable from 
each other.  As the universe ages, the temperature lowers and energy dilutes, these 
forces began to decouple. First the gravitational force becomes independent, then the 
strong force, and finally the weak and electromagnetic forces decouple. When the 
weak force brakes from the electromagnetic, all of the fermions (electrons, quarks, 
leptons, etc) in the standard model acquire mass.  This process is mediated by the 
Higgs Field (Boson) undergoing a first order phase transition. We can evolve a field 
that represents the Higgs boson. This field, in a simplified model, will have stable 
equilibria corresponding to different stable phases of the system. We call the higher 
minimum the false vacuum state (where the electromagnetic and weak forces are 
unified), and the lower minimum the true vacuum state. During this time the Higgs 
field tunnels from the false vacuum to the true vacuum. 
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Using the lattice evolution C++ program we wrote for this problem we have done many simulations at 1283 and 
2563 resolutions at varying values for the kinematic viscosity (η) and the coupling constant (ζ) for our model. We 
present here a sampling of our data. Figure 3 shows a large sample of the bubble radii as a function of time for 
different ζ and η. We see at lower ζ the bubble walls reach greater velocities (the slope) and are generally  not 
dependent on η. However at higher ζ as seen in Figure 4 we see very interesting trends. Our bubble walls are 
actually slowing down and at the very end of our runs the velocities, just barely, turn negative. In other words the 
bubbles start to collapse in on themselves due to a large interaction with the fluid. Figure 5 shows a slice at a 
program time of 200 for the field profile the velocity modulus and vector plot and the fluid density with ζ = η = 0.1. 
The fluid density plot shows us that the density of the fluid inside the bubble is just slightly less than the density of 
the fluid outside the bubble. 

Results 

Figure 2. 1-D  Slice of Initial Field	



Figure 1. Quartic (Perturbed) Potential  

Figure 5.  Slice of Run with ζ= η = 0.1 at tpr = 200 and a Resolution of 2563 

Figure 3. Sample of Bubble Radius and Velocity vs. Time at 2563 Resolution 

Figure 4. Bubble Radius and Velocity for ζ=0.5 and η    {0.05, 0.1, 0.2, 0.5} 

We see from our results that interesting physics is happening at ζ ≈ 0.5. The bubble walls are actually slowing down 
and acquiring negative velocities, and thus the surrounding space is staying at a higher potential. Exploring the 
parameter space around this value is a logical next step for this project. We are also planning to use a more intricate 
potential than our perturbed quartic well.  
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