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Abstract: 

       We used discrete computer models to investigate 

digital thermodynamic systems. These models have a 
conserved quantity, which we call energy, so that we were 
able to define typical thermodynamic quantities. The 
computer model we used was a descendent of the HPP 
Lattice gas, but adapted to allow for unbounded energy. We 
verified the applicability of our model by fitting a Boltzmann 
Distribution to the microstates of our system.   
            In Physics we always see microscopic reversibility. In 
thermodynamics, we do not always see macroscopic 
reversibility, but we see adiabatic transformations that are 
nearly reversible. Our goal was to implement thermo-
dynamic transformations in an exactly reversible way.  To do 
this, we used an information machine that could cause 
transformations by extracting particles from the gas as bits 
of information. It would later need to erase its memory by 
putting particles back into the gas. Our findings showed that 
microscopic reversibility does not imply macroscopic 
reversibility. Using this method, there was always a 
significant entropy and energy increase over a compression 
and expansion cycle. 
 

Quasi-Bosonic Lattice gas (QBL) 
 

        In our lattice gas, there are a number of cells that make 
up a lattice. Each cell in the lattice contains a site for each 
cardinal direction, and each site has an occupation number 
corresponding to the number of “particles” at that site. All 
particles move through the lattice at the same speed, so the 
“energy” of the gas is the number of particles in the grid at a 
given time. If no work is done on the gas, energy is always 
conserved.   
 
       The QBL is a descendent of the HPP lattice gas, but in the 
QBL a site can have occupation numbers greater than 1. This 
means that there is no maximum energy, whereas an HPP 
gas cannot have an energy greater than 4 times its volume. 
The ability to have occupation numbers greater than one is 
key in compressing and expanding a gas in a microscopically 
reversible way. Collisions occur when a north-south or east-
west pair collide; each colliding particle turns 90 degrees. 
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Digital Thermodynamics 
 
 

              Digital Thermodynamics uses computer models to 
examine statistical mechanics in a very precise way. All 
models share 3 characteristics: 
1) They are discrete in time, space, energy, and volume. 
2) They have a completely reversible time evolution. In other 

words, they have microscopic reversibility just like 
everything else we see in Physics. 

3) There is a conserved quantity, which we take to be energy. 
 
 
 
 
 
 
 

Quasi-Bosonic Lattice gas (QBL) 
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       When we initialize a QBL gas, we define it to be of size 𝑉 with 

an energy equal to the number of particles 𝑁. This means that the  

probability of a given occupation number at a site is given by 

𝑃 𝑛 =  
𝑒−𝛽𝑛

𝑍 
.  

Where Z  is a proportionailty constant given by  

𝑍 =   𝑒−𝛽𝑛 =
1

1 − 𝑒−𝛽

∞

𝑛=0

 

We have defined P(n), so we can define entropy for a node, s, by 

  𝑠 =   𝑃 𝑛 ln 𝑃 𝑛 = 𝑛   𝑃 𝑛 (𝛽𝑛 + ln 𝑍 ) = 𝑛 𝛽 𝑛 + ln 𝑍  

By definition, 𝑛 =   𝑛𝑃 𝑛 = 𝑛
1

𝑒𝛽−1
 and we already defined Z. 

Also, the entropy of the entire system is given by 𝑆 = 4𝑉𝑠,  so 

𝑆 = 𝑁 ln(1 +
4𝑉

𝑁
) +4𝑉 ln(

𝑁

4𝑉
+ 1) 

With a definition of entropy,  we can define temperature by: 

1

𝑇
=  𝛽 =

𝜕𝑆

𝜕𝑁
𝑉

= ln
4V

N
+ 1  

As well as the pressure by:  

𝑃

𝑇
=
𝜕𝑆

𝜕𝑉
𝑁

= 4 ln 1 +
N

4V
  

 

 

 

 

 

 

 

Thermodynamic Quantities  
Abstract: 
 

       One way to define work in our system was to have a wall 
that can move back and forth to essentially create a piston. 
Moving the wall so that the volume increases is simple; we 
can just move the wall and let   the   particles   redistribute   
through   the   new   volume    
by    free expansion. To move  
the particles reversibly when 
the volume is decreasing,  we 

needed to make a one-to-one 

correspondence between the 

microstates  of  the system at 

high and low volume. Notice  

that this would be impossible 

in the HPP gas because the size of the finite set of all 
microstates depends on the volume. We used an information 
machine that worked by removing particles in the way of the 
wall and storing them in a binary list as information. Then 
the wall would move and the information machine would 
erase its memory by writing the bits back into the grid. 
Thus, the one-to-one correspondence we needed for 
reversibility was just 𝑛𝑛𝑒𝑤 = 2𝑛𝑜𝑙𝑑 + 𝑏 where 𝑏 is the next 
bit in the binary list and n is the occupation number of a site. 
We saw that while this transformation was microscopically 
reversible it was not macroscopically reversible. Usually the 
total energy of the system would increase by a significant 
amount over a compression-expansion cycle. We were also 
able to show that, on average, information machines like 
Maxwell’s Demon will not violate the second law of 
Thermodynamics because the cost of information erasure 
will cause a net increase in entropy. 

 

Information Machines 

Abstract 
 

          

     For a linearized Boltzmann distribution, we expect  

𝑃 𝑛  𝛼 𝑒−𝐸(𝑛)/𝑇 

    ln 𝑃 𝑛 = 𝐶 −
1

𝑇
𝐸 𝑛  

    Where E(n) is the energy of n. Since our individual particles all 

have the same energy, we looked at a single occupation site to 

generate statistics about the probability distribution of energies 

at various temperatures. 

 

 

 

 

 
 

 

 

 

 

        We are between a 2% and 8% difference, which indicates that 

our model is following a Boltzmann distribution. Furthermore, it 

shows that all of the microstates are equally likely. 

 

 

Boltzmann Distribution 

Digital Thermodynamics 
 
    There are many more interesting qualities of information 
machines left to explore. Since we are compressing and 
expanding the gas adiabatically, we expect that there would 
be no net change in entropy if we run a compression and 
then shortly after run an expansion. Because of the way we 
are writing particles back into the grid, it is usually the case 
that the energy, and therefore the entropy, increase 
considerably. This is true even if we use compression 
methods on the extracted binary list because for every 4𝑉 
bits that we erase the energy of the system will roughly 
double. We suspect that there is a more efficient means of 
information extraction and erasure than the method we are 
currently using.  

Prospects 

Simple 

How do we 
reversibly stack 
particles in the 
way of the wall? 


