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What is Coding Theory?
Coding theory is the branch of mathematics interested in the reliable

transfer of information (it is different from cryptography). Codes are
used everywhere electronic information is transferred. When information
is sent, it is encoded by a transmitter, sent through a communication
channel, and then decoded by a receiver. Within the communication
channel, external sources of noise can change the information being sent.

Certain codes can detect when an error occurs, depending on their math-
ematical structure, and some codes are even capable of correcting these
errors.

The Structure of a Linear Code
A linear code is a vector space over a finite field. It can be

thought of as a set of codewords which obey a certain mathematical
structure.

A linear code C is defined by three parameters:

1. Length n
The total number of “letters” in each codeword of C.
(The total number of bits in a codeword.)

2. Dimension k (≤ n)
The number of basis elements for C
(The number of “information” bits in a codeword”.)

3. Minimum Distance d
The smallest number of differences between the positions of any
two codewords in C.

These are known as [n, k, d]q codes, where q is the size of the finite field
Fq over which C is a vector space.

Best Known Linear Codes (BKLC)
The distance between any two codewords is the number of positions

by which they differ. The distance between the two codewords below is 2:

0001010110

1011010010

The minimum distance d of a linear code is what determines that
code’s capacity for error detection and error correction.

Detectable Errors: d− 1 Correctable Errors: bd−1
2 c

For a given value of length n and dimension k, there exists an upper
bound on the value of d. A known [n, k]q code with a minimum distance
as close as possible to this upper bound is said to be a best known
linear code (BKLC).

Abstract
In this project, we attempt to construct new linear codes with larger min-

imum distances than the previously best known codes by exploiting the
algebraic structures of constacyclic and quasi-twisted codes. For a given
length and finite field, we used the computer algebra system Magma to
exhaustively construct all constacyclic codes and record those codes with
the highest minimum distance for a given length and dimension. We then
use those best constacyclic codes to construct 1-generator quasi-twisted
codes. Finally, we compare the minimum distance of these quasi-twisted
codes against the best known linear codes with the goal of discovering new
linear codes with better parameters. We have been able to find 96 new
codes with this method which have been added to the online database of
best known linear codes.

Constacyclic Codes
Definition:

Let a ∈ Fq be nonzero. A linear code C of length n is said to be
constacyclic if it is closed under the constacylic shift.
If (c0, c1, · · · , cn−1) ∈ C, then (acn−1, c0, c1, · · · , cn−2) ∈ C also.

If the shift constant a ∈ Fq is taken to be 1, then C is a cyclic code.
We adopt the convention of representing the vectors in C as polynomials:

1001101 → x6 + x3 + x2 + 1

Polynomials are nice to work with algebraically! A constacyclic shift of a
vector by a shift constant a corresponds to multiplying the corresponding
polynomial by x mod xn−a. We may exploit the nice algebraic structure
of constacyclic codes.

Theorem:
1. Constacyclic codes are ideals in

Fq[x]
〈xn−a〉.

2.
Fq

〈xn−a〉 is a principal ideal ring.

3. Each C ∈ Fq
〈xn−a〉 is generated by some g(x) ∈ Fq[x]

4. If 〈g(x)〉 = C, then g(x) is a divisor of xn − a
5. There is a one-to-one correspondence between the divisors

of xn − a and [n, k]q constacyclic codes.

We may exhaustively generate every constancylic code within
Fq[x]
〈xn−a〉 by

using the factors of xn − a.

Boundaries of Our Search
Each divisor of xn−a will generate a constacyclic code with shift constant
a ∈ Fq. However, for a given code length n, we need not consider each a ∈
Fq. For some values of a and n, the generated code will be equivalent
to a cyclic code. Thus, we only need to consider certain combinations of
a and n to exhaustively generate all constacylic codes over a certain finite
field. The table below shows which values we used

q a 6= 0,1 n Maximum n

3 2 All n 3 2|n 243

4 Any constant in field All n 3 3|n 256

5 2 All n 3 2|n 130
4 All n 3 4|n

7 2 All n 3 3|n 100
3 All n 3 2|n or n 3 3|n
6 All n 3 2|n

8 Any constant in field All n 3 7|n 130

9 α All n 3 2|n 130
α2 All n 3 4|n
α4 All n 3 8|n

Note that we only considered finite fields of sizes 2, 4, 5, 7, 8, and 9. For
a given finite field, we used the upper bound of n for codes in the Online
Database of Best Known Linear Codes [3] as the maximum length. We
consider all values of k < n

Quasi-Twisted Codes
Definition:

A linear code is said to be `-quasi-twisted (`-QT) if it is closed
under a constacylic shift of a field constant a by ` positions.

Quasi-twisted codes are a generalization of constacylic codes. Many
record breaking codes are quasi-twisted, which makes them promising can-
didates. It turns out that QT codes can be constructed by combining the
generator polynomials constacyclic codes. More specifically, the genera-
tor polynomial of an [m, k, d]q constacyclic code with shift constant a can
be used to construct and `-QT code of length n = m`. The first half
of our project was devoted to constructing constacylic codes with good
parameters. We used the best codes from this search to then construct
quasi-twisted codes.

Our Results
We were able to discover explicit constructions for 31 record breaking quasi-

twisted codes. In addition to these, we were also able to construct an additional
65 record breaking codes using the standard constructions of extending, punc-
turing, or shortening a given code. While we constructed constacyclic codes
over the six finite fields listed earlier, we only constructed quasi-twisted codes
over F7. We chose to start with F7 because it had the largest number of gaps in
the online database [3], but it is very likely that we would have discovered even
more codes had we extended our search into QT codes over other finite fields.

The table below lists the 31 record breaking quasi-twisted codes, as well as
the coefficients of the polynomials we used to construct them. They’re pretty
awesome, so they extend past the page.

[n,k,d]q ` a Polynomials

[28, 10, 14]7 2 3 g = [20101]
f2 = [4631415664]

[40, 14, 19]7 2 3 g = [1110601]
f2 = [6653546334161]

[56, 10, 35]7 4 3 g = [20101]
f2 = [1116114504]
f3 = [0116022034]
f4 = [0046621621]

[60, 16, 31]7 3 3 g = [26311]
f2 = [4306630625334312]
f3 = [2100611365244222]

[63, 13, 36]7 3 1 g = [120426231]
f2 = [0266451653142]
f3 = [1426041266324]

[63, 14, 35]7 3 1 g = [56520201]
f2 = [53456465314443]
f3 = [45602511055454]

[68, 18, 34] 2 3 g = [45334361535421311]
f2 = [356141002520132461]

[72, 12, 44]7 3 1 g = [3160552536401]
f2 = [102131140204]
f3 = [16645415666]

[72, 13, 43]7 3 1 g = [635054304101]
f2 = [040145443601]
f3 = [1300222053634]

[72, 16, 39]7 4 6 g = [101]
f2 = [1565260064566031]
f3 = [3444016656241334]
f4 = [4142552425143116]

[75, 13, 46]7 1 1 g = [2530523656401205253365135561223
10013365614631144212140203433151]

[76, 11, 49]7 2 1 g = [1152566624163222626611351331]
f2 = [4224346026]

[76, 14, 45]7 2 1 g = [1114353015350232103233161]
f2 = [40366023261352]

[76, 17, 41]7 2 1 g = [6524024255453145645621]
f2 = [51003363631106361]

[78, 12, 49]7 2 2 g = [6521100521423445313236253531]
f2 = [360456223064]

[78, 14, 46] 3 3 g = [1303442624021]
f2 = [4341616464144]
f3 = [55045225313464]

[78, 15, 45]7 2 2 g = [4165036146215620542545531]
f2 = [06126622226123]

[80, 14, 48]7 2 3 g = [522225420365324506654040551]
f2 = [24136611641225]

[80, 16, 45]7 2 1 g = [6006053621450126563301221]
f2 = [2366115156441051]

[80, 17, 44]7 2 1 g = [111224120624431245266531]
f2 = [43254250505206654]

[80, 18, 43]7 2 1 g = [60166640516414124466121]
f2 = [404066561423316013]

[84, 14, 50]7 4 1 g = [56520201]
f2 = [646243156644]
f3 = [02202230436242]
f4 = [52660312041116]

[84, 15, 49]7 4 1 g = [1155621]
f2 = [215040235246561]
f3 = [004531104024062]
f4 = [31524445131251]

[84, 16, 48]7 3 6 g = [1524024204251]
f2 = [120360321104464]
f3 = [2435541145143264]

[86, 13, 54]7 2 1 g = [1120561145356542456535411650211]
f2 = [646204401402]

[87, 14, 53]7 3 1 g = [6136425432531461]
f2 = [44165645443123]
f3 = [30335110316236]

[88, 12, 56]7 4 3 g = [42316332311]
f2 = [425266323636]
f3 = [165241403202]
f4 = [212060240563]

[90, 12, 58]7 3 6 g = [1140656330346260461]
f2 = [206610204633]
f3 = [505366253341]

[90, 14, 55]7 3 6 g = [22434445543064061]
f2 = [0300025351322]
f3 = [05216511266443]

[90, 16, 52]7 5 6 g = [101]
f2 = [2224616344452321]
f3 = [662245061420116]
f4 = [0354564141522001]
f5 = [5614334622620645]

[90, 16, 57]7 4 1 g = [615650021]
f2 = [010420452215321]
f3 = [5564621135334356]
f4 = [5114252044012546]
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