
-Established methods to form the cyclopenta[c]pyridine moiety 
involve either formation of a substituted cyclopentane followed by 
cyclization of the pyridine,6 or creation of a decorated pyridine 
followed by a closure of the cyclopentane ring.7 
 
-The method we are exploring utilizes both a tandem and a 
sequential synthesis of both rings in the desired substructure. 
 
-Others in the Hofferberth group have measured yields for 
several methyl substituted targets, but the performance of the C5 
methyl substituted substrate in generating the corresponding 
cyclopenta[C]pyridine has yet to be examined.  The operation of 
unexpected side reactions have hindered the synthesis of the 
requisite C5-methylated substrate. 
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Abstract 
Members of a small family of monoterpene alkaloids containing 
the cyclopenta[C]pyridine substructure have been identified as 
natural products from a variety of plant, animal and bacterial 
sources. Actinidine, the first representative natural product of this 
family to be described, is produced by several plant species and 
is present in the semiochemical repertoire of several insects 
including stick insects, ants, and beetles.1 As many of the natural 
products in this family display interesting biological activities, we 
were motivated to develop a general synthesis for molecules 
containing the cyclopenta[C]pyridine substructure. Our method 
employs easily-prepared linear 1,8-enedial precursors that 
undergo a tandem enamine-enal cycloaddition / pyridine reaction 
to produce the target molecules.2 Described here is the current 
progress in examining the performance of the carbon-5 
methylated linear precursor as part of defining the scope and 
limitations of this general methodology.  
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Isolated Yields Of Substituted Cyclopenta[C]Pyridine(6) 

Substrate Me 
Position 

Tandem Method Sequential 
Method 

Unadorned 20% 33% 
C1 NR NR 
C3 31% 26% 
C4 56% 40% 
C5 ??% ??% 
C6 35% 12% 
C7 43% ??% 

C7+C4 70% 49% 
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