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Abstract
After giving a brief overview of the Four Numbers Game, we 

generalize it to planar graphs. In our generalization, the steps of 

the game alternate between the graph and its planar dual. To 

illustrate our generalized game, we present a case study of the 

game involving the self-dual 5-Wheel graph. We also discuss 

results for a couple of other self-dual planar graphs, and conclude 

with some suggestions for avenues of further exploration.

Figure 1: A Four Numbers Game of length four

The Four Numbers Game
The Four Numbers Game begins with a square that has 

nonnegative integers placed on its corners. From the start 

square, a new square is formed whose corners lie on the 

midpoints of the sides of the original square. We obtain a 

nonnegative integer for each corner of the new square by 

taking the absolute difference between the two numbers on 

the corners of the original square that the new corner sits 

between. For example, if two numbers on the corners of the 

original square are 8 and 5, then the number on the corner of 

the new square that sits between the corners that have 8 and 5
on them will be 8 − 5 = 3.

We repeat this process of obtaining new squares until 

we reach a square with only zeroes on its corners. At this 

point, we say that the game ends since each successive square 

will also have zeroes on every corner. Figure 1 shows an 

example of a particular Four Numbers Game. We define the 

length of a Four Numbers Game to be the number of steps it 

takes to obtain a square of all zeroes, where the start square 

counts as step zero. With this definition of length in place, we 

can now state the following useful facts that have already 

been established about the Four Numbers Game:

• Every Four Numbers Game played with nonnegative 

integers has finite length.

• For every positive integer 𝑛, there exists a Four Numbers 

Game of length 𝑛.

• For all 𝑘 > 2, every 𝑘-Numbers Game has finite length if 

and only if 𝑘 is a positive power of two.

Finding a Generalization
Our research goal was to generalize the Four Numbers 

Game to graphs. While we were not able to find a 

generalization that behaved well on any arbitrary graph, 

we did propose a game that can be played on all planar 

graphs. In our proposed game, successive steps go back 

and forth between the graph and its planar dual. We paid 

particular attention to games involving self-dual planar 

graphs. All steps of such games take place on identical 

graphs.

Figure 2: Obtaining each successive step of the 5-Wheel Game

Case Study: The 5-Wheel Game
It is easiest to understand our generalized game by looking 

at how it is played on a particular graph. Much of our research 

focused on the self-dual wheel graphs, and on the 5-wheel graph 

in particular.

We play the 5-Wheel Game as follows. First we take a 5-

wheel graph and place a nonnegative integer on each of its 

vertices. This will serve as our start graph. To obtain the first step 

of the game, we associate each face of the start graph with a 

vertex on a new 5-wheel graph. As Figure 2 shows, we associate 

each triangular face with a corner vertex, and we associate the 

outer face with the center vertex. Every vertex of the new 5-

wheel receives a nonnegative integer that is equal to the 

maximum pairwise difference between the numbers on the 

vertices of the associated face of the start graph. In Figure 2, for 

example, we have

𝑎′ = max 𝑎 − 𝑑 , 𝑎 − 𝑒 , 𝑑 − 𝑒 .

We perform this process over again to obtain each 

successive step of the game. Repeated computer simulation (and 

eventually proof) led us to conclude that there are two possible 

end behaviors for a game. In particular, a game can either reach a 

fixed point or enter a cycle. Analogous to a square of all zeroes in 

the Four Numbers Game, a fixed point is a graph whose next step 

is itself. A cycle, on the other hand, is a graph that returns to itself 

after two or more steps of the game. We found that every cycle in 

the 5-Wheel Game is an 8-cycle. Figure 3 shows the general 

forms of fixed points and cycles, respectively. 
Figure 3: A general fixed point (left) and 

cycle (right) of the 5-Wheel Game

References
1. J.D. Sally and P.J. Sally, Roots to Research: A Vertical 

Development of Mathematical Problems. American 

Mathematical Society, Providence, RI, 2000.

Acknowledgments
I would like to thank Professor Carol Schumacher for her 

guidance and enthusiasm over the course of this project, as 

well as the Kenyon Summer Science Scholars program for 

giving me this opportunity. Additionally, I would like to thank 

the Mathematical Association of America for allowing me to 

present this research at MathFest.

The Length of a 5-Wheel Game
Naturally, we define the length of a 5-Wheel

Game to be the number of steps it takes to for the 

game to either reach a fixed point or enter a cycle. 

Figure 4 shows a particular 5-Wheel Game that ends 

in a fixed point in three steps.

We were able to prove in our research that every 

5-Wheel Game played with nonnegative integers has 

length at most five. The key to this proof is 

recognizing that the end behavior of an arbitrary 5-

Wheel Game played with nonnegative integers 𝑎, 𝑏, 𝑐, 

𝑑, and 𝑒 is determined largely by the placement of the 

largest and smallest of these five integers on the 

vertices of the graph. Once we create cases according 

to where the largest and smallest of 𝑎, 𝑏, 𝑐, 𝑑, and 𝑒
are positioned, it is a matter of simple computation to 

observe that the game ends in five steps or fewer in 

each case. We were able to make these computations 

less tedious by recognizing that there are certain game 

configurations that all start graphs tend to reach after a 

step or two.

Figure 4: A 5-Wheel Game of length three

Figure 5: A generic 4-Wheel Game (left) and 3-Leafed 

Dipole Rose Game (right)

Further Results
We analyzed games played on other graphs 

besides the 5-wheel, and in some cases we were 

able to draw nice conclusions about the lengths 

of such games. In particular, we proved the 

following two results:

• Every 4-Wheel Game played with 

nonnegative integers has length at most three.

• For all 𝑛 ≥ 2, every 𝑛-leafed Dipole Rose 

Game played with nonnegative integers has 

length at most three.

Figure 5 shows generic start graphs for the 

4-Wheel and 3-Leafed Dipole Rose Games. 

These games were relatively simple to analyze. 

We proved the upper bound on the length of the 

4-Wheel Game through case-by-case analysis 

based on the relative size of the numbers on the 

start graph, and we proved the upper bound on 

the length of the 𝑛-leafed Dipole Rose Game by 

direct computation.

Frontiers
Our research creates plenty of avenues for further exploration, as 

there are an infinite number of planar graphs that we can play our 

generalized game on. Future research might focus more on games 

played on graphs that are not self-dual, and whether we can find 

any general patterns for the lengths of such games. Also, we still 

have much to do in order to completely understand games played 

on the wheel graphs. One question of interest is whether there is 

an upper bound on the length of an 𝑛-Wheel Game. That is, if we 

keep increasing the order of the wheel that we play on, does the 

maximum length of the game plateau or increase without bound? 

This is not an easy question to answer since the games become 

exceedingly complex to analyze as the order of the wheel grows.


