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What is Coding Theory?
Coding Theory is the study of error transmission. It is not
Cryptography, as it has to do with encoding and reliability as opposed
to encryption and security. Thus, in a perfect world where data could be
transferred without any error, this field of study would not be needed.

Data first is encoded before it goes through a channel with noise
which may cause an error. When received, the error can hopefully be
detected and maybe even corrected, before being decoded and
receiving the original data.

The Structure of a Linear Code
A code is a subset of n-tuples of a finite field. A linear code is a
vector space over a finite field, so any element, or codeword, in
this set is a linear combination of other codewords.
A linear code C is defined by three parameters:

1. Length n
The total number of “letters” in each codeword of C.
(The total number of bits in a codeword.)

2. Dimension k (≤ n)
The number of basis elements for C
(The number of “information” bits in a codeword”.)

3. Minimum Distance d
The smallest number of differences between the positions
of any two codewords in C. For Linear Codes, this is
equivalent to the Minimum Weight, or smallest number of
non-zero bits in a codeword that isn’t the 0 vector.

We refer to these codes as [n, k, d]q codes, where q is the size of the
finite field Fq over which C is a vector space.

Best Known Linear Codes
The distance between any two codewords is the number of positions
by which they differ. The distance between the following two codewords
is one:

1011010

1001010

The minimum distance d of a linear code is what determines that
code’s capacity for error detection and error correction.

Detectable Errors: d− 1 Correctable Errors: bd−1
2 c

For a given value of length n and dimension k, a known [n, k]q code
with the largest known minimum distance is said to be a best known
linear code (BKLC). There exist databases with both lower and
upper bounds for these codes; thus, our goal is to find codes with
distances better than the current lower bounds.

Constacyclic Generation
Algebraically, it is easier to work with polynomials instead of vectors.
Thus, we convert the codewords we deal with into polynomial notation
as such:

101100→ 1(x0) + 0(x1) + 1(x2) + 1(x3) + 0(x4) + 0(x5)→ 1 + x2 + x3

Thus, we can describe a constacyclic shift as multiplication modulo
xn − a. We can also use algebra to find all possible generators.

1. Constacyclic codes are ideals in
Fq[x]
〈xn−a〉.

2.
Fq

〈xn−a〉 is a principal ideal ring.

3. Each C ∈ Fq

〈xn−a〉 is generated by some g(x) ∈ Fq[x]

4. If 〈g(x)〉 = C, then g(x) is a divisor of xn − a

5. There is a one-to-one correspondence between the
divisors of xn − a and [n, k]q constacyclic codes.

Thus, we can find every single possible constacyclic code by factoring
xn−a and using all possible factor combinations as a generator. While
this gives us an exhaustive search in theory, it is not possible to compute
every single minimum distance of these codes due to computational
complexity. Thus, we use two techniques to find as many as possible:

1. For polynomials with a large number of irreducible factors, we try to
find a cap (such as 106) where looking at more factor combinations
does not seem to find better codes.

2. We would discard codes with large dimensions which made computations
too complex.

Types of Codes
Definition:

Let a ∈ Fq and ` less than n be nonzero. A linear code C of
length n is said to be quasi-twisted if it is closed under the
quasi-twisted shift.
If (c0, c1, · · · , cn−1) ∈ C, then
(a ∗ cn−`, a ∗ cn−`+1, . . . , c0, . . . , cn−`−1) ∈ C too.

If the index ` is one, then C is a constacyclic code. If the shift
constant a ∈ Fq is one, then C is a quasi-cyclic code. If both are
one, then C is a cyclic code.

Boundaries of Our Search
Each divisor of xn − a will generate a constacyclic code with shift
constant a ∈ Fq. However, for a given code length n, we need not
consider each a ∈ Fq. For some values of a and n, the generated code
will be equivalent to a cyclic code. Thus, we only need to consider
certain combinations of a and n to exhaustively generate all constacylic
codes over a certain finite field, as long as we have looked over all cyclic
codes. The table below shows which values we used:

q a 6= 0, 1 n maximum n

3 2 all n = 2m 243

11 2 all n = 2m or n = 5m 255

3 all n = 5m

10 all n = 2m

13 2 all n = 2m or n = 3m 255

3 all n = 3m

4 all n = 3m or n = 4m

5 all n = 2m

12 all n = 4m

For GF (3), we used the bounds found at [3], while for GF (11) and
GF (13), we used the bounds found at [7] and [8]. We consider all
values of k < n for GF (3), 3 ≤ k < 8 for GF (11), and 3 ≤ k < 7 for
GF (13) as those are the bounds that are in the databases.

Quasi-Twisted Extension
Quasi-twisted codes are a generalization of constacylic codes.
Thus, we can use contacyclic codes as building blocks for them. To
do this, we start with the generating polynomial of a constacyclic code,
and add on that generator multiplied with random polynomials of a
certain condition, and use this as a new generator array. This ensures
that the new minimum distance d′ ≥ d ∗ `.

G = [g(x)]⇒ [g(x), g(x) ∗ f1(x), g(x) ∗ f2(x)]

Our Results
We were able to find 42 record-breaking codes using the methods previously
outlined:

•GF (3) Quasi-twisted: 29

•GF (11) Constacyclic: 2

•GF (11) Quasi-twisted: 6

•GF (13) Constacyclic: 5
An Example: [22, 7, 14] GF(11) QT-Code (` = 2):
Factoring x11 − 1
g(x) = x4 + 7x3 + 6x2 + 7x + 1,
f1(x) = 10x6 + 3x5 + x3 + 4x2 + 7x + 2

The reason we found many more GF (3) QT codes than in GF (11) or
GF (13) is simply because we have a much large database for GF (3) than
the other two alphabets.

Moving forward, we look to expand this method over the other finite fields
we have databases for. Furthermore, we are working on a new, top-down
method, and have been able to find new codes using it. However, we are
still working on both the theory and implementation of this new method.

Top-Down Method
The new method starts by taking a specific kind of constacyclic code, called
a simplex code. A simplex code has parameters [(qk−1)/(q−1), k, qk−1]q,
where q must be a prime power (which is true for any finite field). We
then take the (redundant) n x n generator matrix where each row is a
constacyclic shift of the previous row. This is also known as a twistulant
matrix. We then choose two integers m and p such that n = mp. By
grouping the i-th, (p+ i)-th,. . . ,((m− 1)p+ i)-th rows and columns, this
matrix becomes one made up of smaller, cyclic matrices. We then take the
defining polynomial of these cyclic matrices, find their weight, and replace
each cyclic matrix with that weight to create the weightmatrix. We
can find new quasi-twisted codes by taking r columns from this matrix.
The defining polynomials of the top-row cyclic matrices of these columns
will form a generating matrix of an [r ∗ m, k]q quasi-twisted code with
minimum distance equal to the minimum row sum of these columns.

As it is computationally complex to find the r columns that form the
largest minimum row sum, we use the heuristic method as described in
[9] to find new codes. This method starts with any one column and then
continues to add on the column that produces the largest minimum row
sum the least amount of times. In the case of ties, the first one found is
the one chosen.
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