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Abstract
Introduced by Ken Wilson in 1974, lattice gauge theories have emerged
as a useful tool for numerical simulations of gauge fields. Lattice approx-
imations of actions and equations of motion involving gauge fields are a
natural choice for dynamical simulations of four-dimensional spacetime,
which must already be discretized to a lattice to be numerically tenable.
In particular, we can apply these methods to study reheating by evolv-
ing the inflaton coupled to various Standard Model particles. Classical
simulations in the U(1) case have been successful; we now turn to the
more challenging non-abelian case. The viability of classical evolution
of SU(2) gauge fields has been contested, calling for lattice implemen-
tations. However, the higher resolution offered by current technology
offers a chance to successfully evolve the classical theories, which we
will subsequently verify with the lattice theory. In particular, we will
evolve the inflaton coupled to an SU(2) field via a dilatonic coupling.

Reheating
Inflation, while resolving three major problems of early-universe Cosmol-
ogy, leaves the universe cold. All of the energy that goes into creating
matter, radiation, etc., as we see in the present universe is trapped inside
the inflaton field. Reheating is the process through which the Universe
thermalizes, converting the inflaton energy into radiation which even-
tually precipitates matter. Preheating, a particularly efficient model of
reheating, achieves thermalization by releasing the trapped energy in
the inflaton as it oscillates via non-linear processes such as parametric
resonance, similar to a child pumping their legs to swing higher. We aim
to simulate inflaton-gauge field couplings to see if parametric resonance
occurs.

Gauge Theory
The defining property of a gauge theory is an action which is invari-
ant under symmetric transformations. Gauge fields arising from such
theories are force mediators in the Standard Model. The simplest ex-
ample, the U(1) abelian group, describes QED; we call its gauge field
the photon.
We consider the Special Unitary Group, n = 2, denoted by SU(2). Its
elements are 2 × 2 unitary matrices with determinant 1, generated by
the Pauli matrices,
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SU(2) fields have three “flavors,” one associated with each generator.
The SU(2) field tensor is

F a
µν = ∂µA

a
ν − ∂νAa

µ + igWε
abcAb

µA
c
ν, (2)

where Aa
µ(x) is the vector potential of the gauge field. The third term

in the field tensor arises from the non-abelian nature of SU(2).
The Yang-Mills action, the typical gauge-invariant choice, is

SYM = −1
4

∫
d4x
√
−gTr

[
F a
µν(x)σaF a,µν(x)σa

]
. (3)

The Continuum Model
Our model explores the interaction between the inflaton φ and an SU(2)
gauge field under the dilatonic coupling Θ(φ(x)) = exp(φ/M). Using
the shorthand SG = −1

4Tr
[
F a
µν(x)σaF a,µν(x)σa

]
, our action is

S =
∫
d4x
√
−g

[1
2
∂µφ(x)∂µφ(x) + V (φ(x)) + Θ(φ(x))SG

]
. (4)

We will study both continuum and lattice forms of the equations of
motion. The continuum equations of motion are [3]

�φ(x) + V ′(φ(x)) + Θ′(φ(x))SG(x) = 0 (5)

and

�Aa
µ(x) + W ′(φ(x))

W (φ(x))
ηνβF a

µν(x)∂βφ(x) = 0. (6)

The Lattice Approximation
To discretize a gauge theory, we approximate spacetime as a four-
dimensional lattice with spatial spacing a and temporal spacing at. Our
gauge field becomes a field of link variables, defined by

Uµ(x) = exp
[
−iaµgW

2
σaAa

µ(x)
]
. (7)

The variable Uµ(x) lives on the “link” between the lattice point at x
and the adjacent lattice point in the µ-direction. We also define the
plaquette

Pµν(x) = Uµ(x)Uν(x + µ̂)U †µ(x + µ̂)U †ν(x). (8)
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Figure 2: Plaquette Pµν(s).
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Figure: The plaquette Pµν(s). [2]

The plaquette is particularly useful as an approximation for the field
tensor; expanding in order of the lattice spacing results in

Pµν(x) = 1− iaµaνgW
2

F a
µν(x)−

a2
µa

2
νg

2
W

8
(
F a
µν(x)

)2 + · · · . (9)

By antisymmetry, the first order term vanishes when approximating the
Yang-Mills action:

SL = −1
4
∑
x
κa4 2

g2
∑
µ<ν
<Tr [1− Pµν(x)]. (10)

Fixing a temporal gauge results in U0(x) = 1.

Lattice Equations of Motion
Variation on the lattice action with respect to φ gives the same equation
of motion as in the continuum:

�Lφ(x) + V ′(φ(x)) + Θ′(φ(x))SG(x) = 0. (11)

�L denotes the lattice D’alembertian, which differs only by the metric
used. Varying with respect to the links, we find that∑

µ 6=γ
Θ(φ(x))Wγ,µ(x) +

∑
µ 6=γ

Θ(φ(x− µ̂))Wγ,−µ(x) = 0. (12)

The term Wγ,µ(x) indicates a staple, which is defined such that
Uγ(x)Wγ,µ(x) = Pγµ(x). To decouple this second order equation (sta-
ples resolve roughly to second order derivatives), we introduce the elec-
tric field

Ea
i (x)σa = Ui(x + at)U †i (x)− 1 (13)

which allows us to define an “update rule” for the links via

Ua
i (x + at) = Eb

i (x)U c
i (x)εabc + Ua

i (x). (14)

Then, substituting into Equation (12),

Ea
i (x) = −Θ(φ(x− 0̂))

Θ(φ(x))
Ea
i (x− 0̂) + κ2

2
∑
j 6=i
P a
ij(x)

+ κ2

2
∑
j 6=i

Θ(φ(x− ̂))
Θ(φ(x))

P a
ij(x− ̂).

(15)

This closes our solution set.

Future Work
A version of gabe [1] modified to evolve gauge fields in accordance with
lattice gauge theories is being finalized. We cannot use gabe’s native
second-order Runge-Kutta method, since we do not consider points in
between lattice sites to exist. This leaves Euler’s method as the only
viable option. We will evolve the dilatonic coupling with continuum
equations of motion as well in order to compare results at resolutions
upwards of 5123. The results of simulations will allow us to both evalu-
ate the viability of lattice approximations as well as SU(2) coupling as
a reheating model.
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