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Abstract

Realistic atomic and molecular-scale simulations are computationally expensive,
limiting the scope of applicable models. The focus of this research was to explore
different computational methods in order to discover the methods that minimized
the number of energy calculations required to characterize the thermodynamic
properties of a ferromagnetic model. By using simplified models of a ferromagnetic
system, we could compare the results of our research against established values. The
Metropolis and Wang-Landau importance sampling algorithms were applied to the
Ising and Heisenberg lattice models in order to provide comparative statistics. Four
programs were generated comparing the Metropolis and Wang-Landau algorithm in
two and three dimensions. The Metropolis algorithm required less energy
computations than the Wang-Landau algorithm when both methods were used to
compute energy as a function of inverse temperature to an accuracy of 5 percent.
These results will be utilized to increase the computational efficiency of more
realistic models.

Background

The Ising model is a mathematical model of ferromagnetism in statistical mechanics.
This model can be used to model phase transitions of a ferromagnetic material as a
function of changing temperature. The Ising model is comprised of a square lattice
with N lattice sites, where each site contains a spin-1/2 particle that can have a spin
magnetic moment of either +1 or -1 in scaled units. In order to reduce edge effects
during simulations, periodic boundary conditions are employed. Any particular
configuration of spins has a probability of occurring based on the Boltzmann
distribution, where
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The energy of the lattice for any configuration of spins is given by the Hamiltonian,
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The Hamiltonian sums over pairs of spins in a nearest neighbor system across the
entire lattice, where J is the interaction strength between spins, commonly assumed
to be 1 in scaled units. There are 2*N possible configurations in the Ising model,
making it difficult to numerically evaluate thermodynamic averages for large lattices.
Instead, methods such as the Metropolis Algorithm and the Wang-Landau algorithm

allow thermodynamic statistics to be extracted from the model without needing to
compute every possible configuration.

Wang-Landau Algorithm

The Wang-Landau Algorithm as applied to the Ising Model is another Monte Carlo
Method that can be used to determine the thermodynamic properties of the system.
The algorithm was designed to calculate the density of states, g(E), the number of all
possible configurations for an energy level E of the system [3]. Unlike the Metropolis
Algorithm, the Wang-Landau Algorithm does not evaluate the probability of a
particular configuration at varying temperatures. Instead, the Wang-Landau
Algorithm chooses its acceptance probabilities based on the reciprocal of the density
of states at a given energy. The Wang-Landau Algorithm it must also satisfy the
conditions of detailed balance and ergodicity during its random walk across
configuration space in order to generate an accurate density of states function.
During the simulation, single-spin flip dynamics occur as the system moves between
configurations by proposing a single spin flip at a random lattice location. The
transition probabilities between system energies before and after a spin value is
changed is given by
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The condition of ergodicity is clearly satisfied, since every configuration of spins is
possible to reach by iterating through enough spin flips. In order to satisfy the
condition of detailed balance, the ratio of transition probabilities to and from a single
energy state upon reaching equilibrium must be

p(E; - E3) _ g(Ey)
p(E; - E;) g(E3)

In the case of the Wang-Landau Algorithm, equilibrium is reached when an energy
histogram tracking the system energy values visited is flat, meaning that all possible
energy levels have been visited an equal number of times. This allows the algorithm
to increase its accuracy of g(E) with subsequent iterations of smaller modifying
factors to g(E). When the density of states has been calculated, statistics for all
energy levels have been obtained, and various thermodynamic quantities can be
calculated for any temperature.
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Fig 3: Average internal energy per site versus scaled temperature for 2D Ising
model as calculated by the Wang-Landau Algorithm for lattice size L = 16.

Fig 4: Average specific heat per site versus scaled temperature for 2D Ising
model as calculated by the Wang-Landau Algorithm for lattice size L = 16.
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Fig 5: Logarithm of density of states, In[g(E)] versus energy per
site for the 2D Ising model as calculated by the Wang-Landau
Algorithm for lattice size L= 16

Metropolis Algorithm

The Metropolis Algorithm is a Monte Carlo Method that evaluates lattice
configurations of the Ising Model based on their probability of occurring. The
algorithm utilizes a quasi-random walk through phase space in order to simulate the
random thermal fluctuation of the system from state to state over the course of an
experiment [2]. All possible states are not evaluated during this method. Instead, an
appropriate random set of states are generated according to the Boltzmann
probability distribution through a chain of Markov processes. This Markov chain
must satisfy the conditions of ergodicity and detailed balance in order to match the
expected Boltzmann probability distribution of states. Ergodicity requires that every
possible lattice configuration is accessible from any starting configuration and
detailed balance requires that upon reaching equilibrium, the probability ratio of
transitioning to and from any given configuration u is given by
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Built around the principle of single-spin flip dynamics, each successive configuration
is generated from a previous state using a transition probability that is dependent on
the energy difference between the initial and final states. The algorithm randomly
selects a lattice point and flips its spin state to the opposite value, and accepts the
change based upon the most efficient acceptance ratio A, where

Alu-v) = e PE-EY  forE, — E,>0

Alu-v)=1 for E, —E, <0

The algorithm repeats this process multiple times, creating a Markov chain that
eventually reaches equilibrium, oscillating around a single energy value of the system
that is equally likely to accept or reject a proposed spin configuration.
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Fig 1: Average internal energy; per site versus scaled
temperature for 2D Ising model as calculated by the
Metropolis Algorithm for lattice size L = 16
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Fig 2: Average specific heat per site versus scaled
temperature for 2D Ising model as calculated by the
Metropolis Algorithm for lattice size L = 16

Results

Four programs were generated comparing the Metropolis and Wang-Landau
algorithm in two and three dimensions. These algorithms were both able to produce
statistics on thermodynamic quantities including internal energy per site and specific
heat per site. The number of energy computations required to characterize these
guantities over a temperature range of 0.2Tc to 5.0Tc were compared between
algorithms. For a L = 16 lattice, the Wang-Landau algorithm required on average 650
million energy calculations of the system in order to produce characteristic data within
an accuracy of 5 percent, nearly 30 times more than the Metropolis Algorithm. From
this, we conclude that the Metropolis algorithm is a more efficient method of
characterizing ferromagnetic systems.
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