Reversible Ising Dynamics: a Digital Thermodynamic Model

Abstract

We investigated the behavior of the reversible Ising dynamics
system—a simple and explicitly reversible model of the micro-
scopic dynamics of magnetic systems. We searched for ways
to quantify the system’s thermodynamic behavior, including a
probe for the local temperature of the system using Boltzmann
statistics of a localized coupled two level subsystem. We consid-
ered a novel extension to the Reversible Ising Dynamics Model

where we alter the system’s Hamiltonian to model work per-
formed or extracted via the changes in an external field. We
further investigate the reversibility of such magnetization and
demagnetization processes using a fixed work schedule and in-
vestigated the consequences of using the sparsely or gradually
applied fields. We ultimately used the coupled subsystem ap-
proach to integrate a bit engine model of Maxwell’s Demon (a
system that extracts work at the cost of recording information
about our system).

Introduction

The Ising model approximates magnetic systems and their tran-
sition between paramagnetic and ferromagnetic phases.|1| For this
project, we use a scheme to model the microscopic dynamics of
Ising systems. The internal dynamics of the system are explicitly
reversible and conserve the total energy of the system (defined as
the familiar Ising energy). While the dynamics of the system are
cartoonishly simply, they capture the essence of thermodynamic be-
havior.
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Figure 1: A 2D Lattice of Spins
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Reversible Ising Dynamics

Our model consists of a finite two dimensional grid of spins, whose
energy is determine by the number of stressed (anti-aligned) or

relaxed (aligned) nearest neighbor bonds. The system energy is
then|1]:

E = — ZS@SJ' (1)
Z?]

We model the microscopic behavior over a series of discrete time
steps (i.e. the time can only take values of 0,1,2 etc.) according to
the following local rule:

» Dystem energy must always be conserved

» Whenever flipping a spin would conserve energy, flip the spin.

To ensure global invertibility, (corresponding to the time reversibil-
ity in physics) we use a partitioning scheme.|2||3]
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Exact Reversibility

« We partition the grid of spins into two subgrids like the black
and white squares on a chessboard

« Cells update on alternating substeps; if a cell updates on a
substep, none of its neighbors must update on the same substep

» Cells corresponding to black and white squares update on
different substeps

B Updating cell
Neighborhood

B Other cells updated
on the same step

Figure 2: A spin and its neighborhood

Introducing External Fields

One goal for this project was to extend Reversible Ising dynam-
ics to situations involving thermodynamic work (previous work has
already examined heat flow in Ising systems|4|) The new energy is:

E=— ZSZ'S]' — ZBZSZ (2)
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The change in energy due to a change in the field is the work per-
formed on the system (this can be positive or negative corresponding
to adding or extracting energy from the system.)

For the Ising system in a paramagnetic phase, we can see the net
magnetization change with an applied field. We apply the field
‘sparsely’” at every third cell in every third row and ‘gradually’ by
waiting several time steps in between magnetizations.

Net Magnetization in External Field
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Figure 3: The net magnetization of a grid changes with the applied field

Measuring Local Temperature

We used a Metropolis algorithm to generate initial conditions for
our grid of spins at a particular temperature. This corresponds to
a global initial temperature, but we want to characterize the tem-
perature of a specific location in our grid, so we can see how the
temperature changes as we subject our system to various processes.
Based on the Boltzmann distribution, we find the inverse tempera-
ture 5 to be related to how often the subsystem is found in its two
states:
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Figure 4: Comparing measured temperature to set temperature

Maxwell’s Demon

Maxwell’s Demon is a theoretical device that measure a system’s mi-
crostate and uses that information to extract work. To model this
process concretely, we consider a finite state demon that can ma-
nipulate 'bits’ coupled to our environment as well bits in a memory
tape. The demon interacts with two state 'bits’ coupled to our Ising
orid at specific points. This integrated the work of Avery Tishue on
reversible bit engines.

Conclusion

We extended the Reversible Ising Dynamics model with a cou-
pled substem acting as a ‘thermometer’ to measure the local
temperature. We also introduced a model for work done
on the system, changing the system dynamics corresponding

to a changed external field. We investigated modeling cyclic
processes in our discrete world (corresponding to thermody-
namics cycles). Finally, we used our two state subsystems to
act as thermal bits in a simple model of Maxwell’s Demon—
an explicitly reversible model of the Demon interacting with a

thermal environment
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