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Abstract Objective Conclusions

The aryl hydrocarbon receptor (AHR) is a ligand activated

. . . To characterize the AHR gene(s) from X. borealis and B. marinus and compare them to the well studied * The degenerate primer design of the
transcription factor that mediates the toxic effects of del , X Iaevis. Analvsis of AHR q 1 clarify th hich the AHR , . ] thod o find
dioxin-like compounds, such as 2,3,7.8- mo. € organlsm, : aeyzs. nalysis o sequences and structure will clarity the extent to which the experiment 1s a Yla ¢ method to m.
tetrachlorodibenzo-p-dioxin (TCDD). Once bound by amino acid sequence differs between frogs. AHR orthologs n n.on-model organisms.
TCDD, the AHR complex regulates the transcription of a * The AHR amino acid sequences of
battery of genes that ultimately impart toxicity. Species Results closely related species are more distantly
specific genotypes of AHR determine structure and related ones.
affinity for TCDD. These differences in AHR ligand
affinity can often explain the degrees of TCDD sensitivity Figure 1 Figure 9)
between different vertebrate clades. Previous AF Futu re Dir ections
characterizations in the frog Xenopus laevis, the RT-PCR X. laevis  |X. borealis |X. borealis |B. marinus

. - AHR1B cDNA 1 cDNA 2 cDNA

salamander Ambystoma mexicanum, and the caecilian |
Gymnopis multiplicata predicted low affinity binding and Degenerate |A2 (Forward) |5’-CGGGATCCGAYTAYCTIG )A(.H l;ﬁvis 929, 95%, 88% 849, * Perform RACE-PCR to obtain the full
insensitivity to TCDD in all three amphibian orders'~~. Primers GITTYCAR-3’ ’ (161/174)  |(164/172)  |(158/175)  |(147/176) open reading frame for both X.borealis
While .tl.le.se c}ata do suggest that low afﬁgity binding and B2 (Reverse) | 5’-GCTCTAGAGCTCIRCYTCI )A(.H l;%is 899, 93% 839 and B.marinus.
insensitivity 1s c}(:mmon t(? all tthee amphlllblan or}ilelis, they GTRTAICC-3’ (156/174)  |(164/175)  |(146/176) e Obtain AHR ¢cDNA and ORF from
do not cgnﬁrm t 1s trend 1s cons1st§gt within each ¢ ade. Cycling 04°C/ 5 min: (94°C/ 15 sec: 50°C) 30 Xbﬁcx?lalls 91% 36% additional Anura species.
In studying a wider group of amphibians from within the = . £R0 - . 40 ¢ (161/175)  |(151/176) . .

. . Cond sec; 68°C/ 1 min)x43; 4°C/ hold * Begin cataloging the AHR sequences of
frog (Anura) order, we seek to confirm this trend 1s onditions X borealis 85% h S der C S q S 1 p 4
conserved among related amphibians. To determine this, Figure 1. RT-PCR Primer design. The degenerate primers were cDNA 2 (150/176) the order L-au ?ta (salamanders). :
we chose to characterize two frogs: Xenopus borealis, designed from conserved regions within vertebrate AHRs that have B. marinus * Use the collection of these AHRs to galn
which is phylogenetically similar to the previously been previously SISIOWH to successtully amplify cDNA from many cDNA predictive power about the TCDD

vertebrate species’.

mentioned X. laevis; and Bufo marinus, a more distantly sensitivity of unsequenced or untreated

Figure 2. Amino Acid identity analysis. X. borealis was found to have o
amphibians.

related frog. The cloned cDNAs of each frog revealed that two paralogs of AHR which shared high sequence 1dentity with the single

the B. marinus AHR Shareq 83-84% sequence 1dentity to B.marinus AHR shared considerably less identity with either Xenopus
both X. laevis paralogs, while the two X. borealis paralogs species. Numbers in parenthesis show shared amino acids divided by
shared 93% and 91% identity. total amino acids aligned.
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