
Designing and Developing a Computer Program to Assess Building Code Requirements
Nicholas Ogilvie-Thompson and James P. Skon, Ph.D.

Kenyon College Summer Science 2016

Abstract
When designing and constructing a building, careful 
attention must be paid so that the building meets all 
requisite code requirements. Building codes differ 
country-to-country, state-to-state, and sometimes even 
city-to-city, but no matter where you are, the penalties for 
failing to be code-compliant are stiff, ranging from hefty 
fines to necessitating reconstruction before the building 
can be used. Because of this, architects and architectural 
engineers take great pains ahead of construction to make 
sure their designs are up to code. However, there 
currently is no simple method for an architectural engineer 
to determine a building’s code requirements other than the 
tedious process of going over the code manually. In order 
to help ease these issues, I worked to create an 
architectural planning system that can represent 
architectural knowledge in such a way that it can ask the 
questions necessary to determine the code requirements 
a building would have to meet.

Why do this? Project Goals

Initial Approach:

● Systematize the logic of the 
building code

● Use that to create a 
proof-of-concept of a program 
to determine a building’s code 
requirements

● Focus on usability
○ Ask users as few questions 

as necessary

Background

Initial Approach

The Building Code Usability

Conclusion

Acknowledgments
This work was funded by the Kenyon Summer Science Scholar 
Program, and could not have occurred without the support and 
guidance of Professor Jim Skon, as well as Mr. Lance DeBenedictis, 
who provided architectural insight during this project’s 
development.. Additionally, I would like to thank Joseph Schutz and 
Benjamin Weinberg, who worked on concurrent projects this 
summer, and whose work was critical to my own.

● Code assessment is 
expensive
○ Involves architectural 

engineer and lawyer
● Mistakes are extremely 

costly
● On average buildings are 

“overbuilt” by ~5-10%

● At the end of the summer, 
development had been completed 
for Chapter 3 of the Ohio building 
code, “Classification of Facilities”

● The system will guide the user 
through a series of questions on 
their building’s occupancy and 
usage, and then report what 
classifications it matches

● Additionally, the project is in an 
excellent position going forward

● The system is scalable to the rest 
of the code as well as to other 
building codes

● Development tools are in place to 
assist those who might continue 
this project

● On startup, database was loaded into a 
CLIPS file

● Dependencies read from CLIPS, answers 
were written to CLIPS and database

● Answers, patterns, and question sets all 
stored in separate CLIPS files

● Overly complex with little scalability

Revised Approach 

● Eliminated CLIPS
● Answers were still written to 

database
● Dependencies formulated as 

Java functions which launched 
SQL queries

dependency=”qEB_IBC06_0302-1-Assembly,2”

dependency=”sAns(qEB_IBC06_0302-1-Assembly)==2”

● The building code can be broken down into 
what is essentially a series of if/then statements

● Certain classifications relied on one “if”, others 
upon many

● Thus, our dependency system, which relied on 
Boolean operators, could be used to 
systematize the code 

● Used the Turbotax model
○ Took a complicated and 

highly technical topic and 
made it accessible and 
easy-to-parse

● Dependencies not only 
determined the user’s code 
requirements, but also guided 
them through the program
○ Only asked questions that 

had not been made irrelevant 
by previous answers

● Simplified the language of the 
building code


