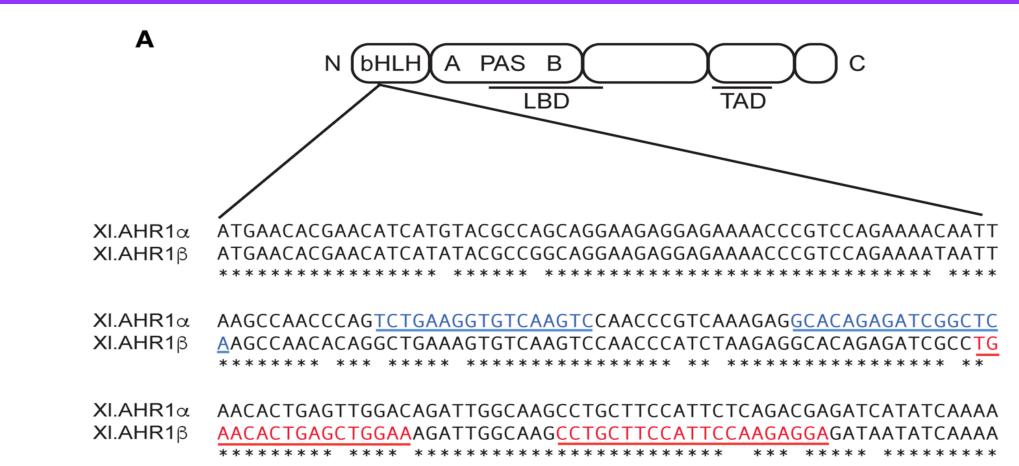
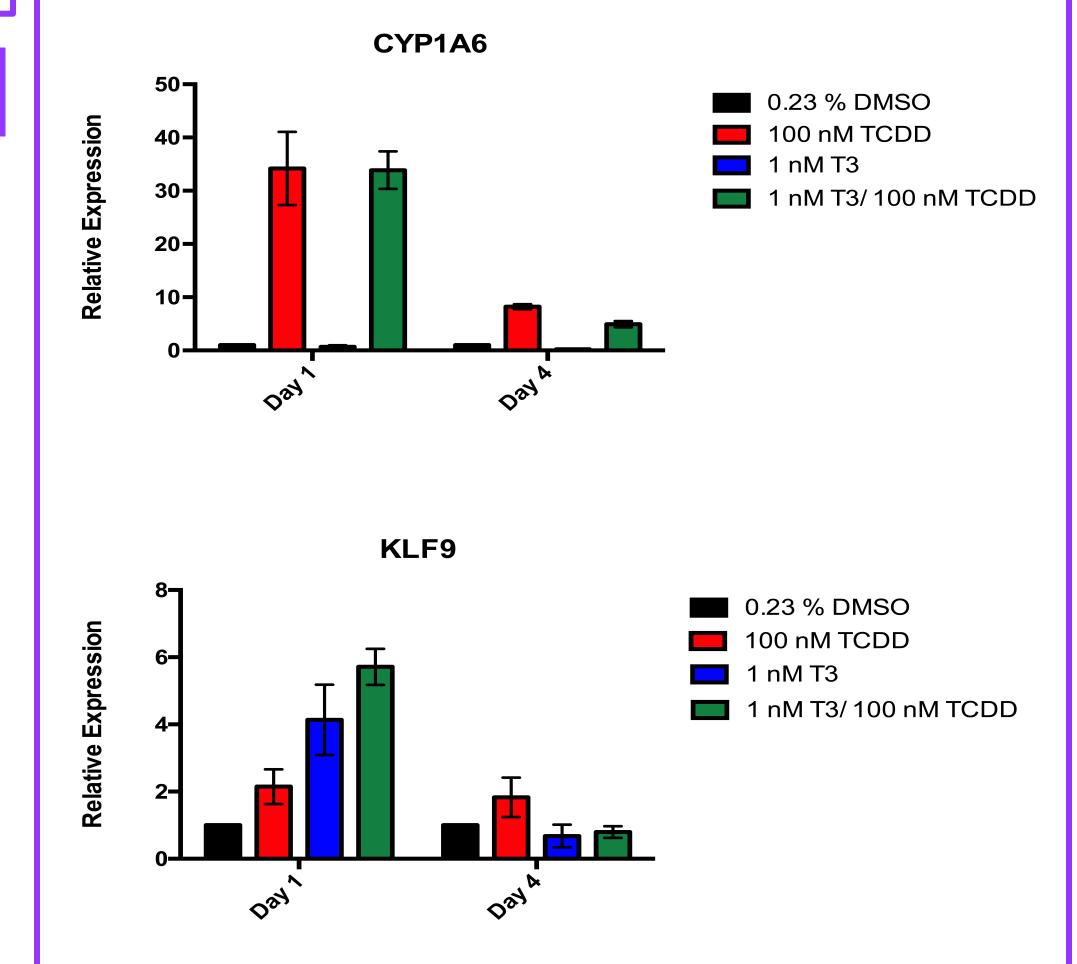


Aryl hydrocarbon receptor paralog function in dioxin and thyroid hormone response pathways in the African clawed frog, Xenopus laevis Naomi Pang, Rachel Schafer, Natalie Plick, Scott Freeburg, and Wade H. Powell, Ph.D.

Abstract


Thyroid hormone (TH) is vital for the proper development in all vertebrates, as exemplified in frog metamorphosis. Gene expression studies in a Xenopus laevis cell line (XLK-WG) and X. *laevis* tadpoles suggest that the thyroid hormone receptor (TR) has a functional interaction with another regulatory protein, the aryl hydrocarbon receptor (AHR). The AHR is a ligandactivated transcription factor that mediates the toxic effects of xenobiotic contaminants such as 2,3,7,8-tetrachlorodibenzo-*p*-dioxin (TCDD). In both *in vivo* and *in vitro* studies, the AHR target gene cytochrome P4501A6 (cyp1A6) was induced by 100 nM TCDD. The TH target gene Kruppel-Like Factor 9 (klf9), was up regulated by 50 nM triiodothyronine (T3), the biologically active form of TH. In vivo studies showed that co-exposure to TCDD and T3 augmented cyp1A6 and klf9 induction compared to the single-compound treatments. X. laevis possess two paralogous AHR proteins, AHR1 α and AHR1 β , which exhibit distinct transcriptional functions. Here, we seek to explore the individual roles of each AHR in the interaction between the TRsignaling pathway and the AHR pathway. Preliminary experiments show that mutant cell lines lacking either AHR have a decreased capacity for *cyp1A6* induction following T3 and TCDD co-treatment. This suggests that expression of both AHRs is required for maximal transcription of this canonical target gene. However, in both mutant cell lines, induction of *klf*9 in response to T3 and TCDD co-treatment remained unchanged compared to the wild-type response, indicating a redundant function in the AHR paralogs for *klf9* induction. [NIH R15 ES011130]

Objective


Understand X. laevis AHR1 paralog function in TCDD and TH response pathway interactions.

Generation of mutant cells

Kenyon College Summer Science 2017

Gene expression in co-treated tadpoles

Background

- A. Thyroid Hormone and Dioxin Response Pathway Interactions
- Thyroid hormone (TH) directs frog metamorphosis, a tissue-specific process that includes events such as limb formation, organ remodeling, and tadpole tissue resorption.
- TH is secreted into the blood as the prohormone thryoxine (T4) and is converted to its biologically active form, triiodothyronine (T3) via deiodinases I and II.
- T3 activates to the thyroid hormone receptor (TR) in the nucleus, leading to the transcription of TH-response genes.¹
- 2,3,7,8-tetrachlorodibenzo-*p*-dioxin (TCDD) exposure results in disruption of the thyroid hormone system in several species.
- The aryl hydrocarbon receptor mediates TCDD toxicity.

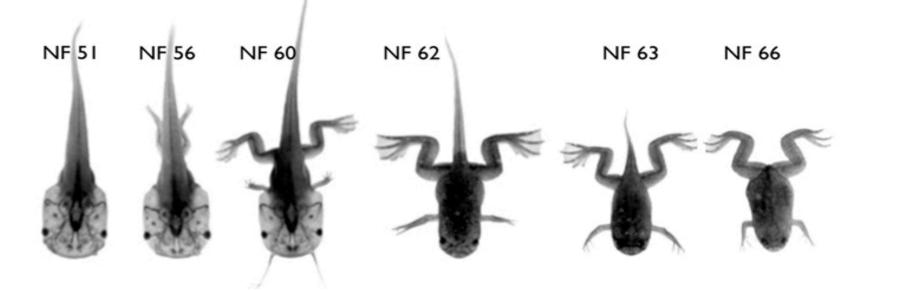


Figure 1. Metamorphosis of Xenopus laevis. Nieuwkoop and Faber (NF) stages 51-66 describe the thyroid hormone-directed progression from tadpole to frog.³

wt AHR1a ATTAAGCCAACCCAGTCTGAAGGTGTCAAGTCCAACCCGTCAAAGAGGCACAGAGATCGG genomic AHR1α-A3 ATTAAGCCAACCCAGTCTGAAGGTGT----TCC----TCAAAGAGGCACAGAGATCGG Δ4.6

IKPTQSEGVKSNPSKRHRDRLNTELDRLASLLPFSDEIISKLDKLSVLRLSVSYLRAKGF predicted AHR1a-A3 IKPTQSEGV---PRRGTEIGSTLSWTDWQACFHSQTRSYQNLTSFQCLD-SVLVI* premature stop protein

B1 strain

CTGAACACTGAGCTGGAAAGATTGGCAAGCCTGCTTCCATTCCAAGAGGAGATAATATCA CTGAACACTGAG------Δ----CTTCCATTCCAAGAGGAGATAATATCA Δ21 genomic

IKPTQAESVKSNPSKRHRDRLNTELERLASLLPFQEEIISKLDKLSVLRLSVSYLRAKGF wt AHR1β predicted IKPTQAESVKSNPSKRHRDRLNTE----LPFQEEIISKLDKLSVLRLSVSYLRAKGF $\Delta 7$ AHR1β-B1 protein

Figure 4. TALEN-induced AHR mutations.⁷ (A) XLK-WG cells were transfected with TALEN constructs targeting helix 1 of the basic-helix-loop-helix (bHLH) motif within exon 2 of $AHR1\alpha$ or $AHR1\beta$. (B) Mutant AHR sequences were amplified with PCR, cloned, and sequenced. A four and six bp deletion in the TALEN target site of AHR1 α encodes a protein with a premature stop codon (A3 mutant cell line). A 21-bp deletion in AHR1β removes seven amino acid residues in the translated protein (B1 mutant cell line).

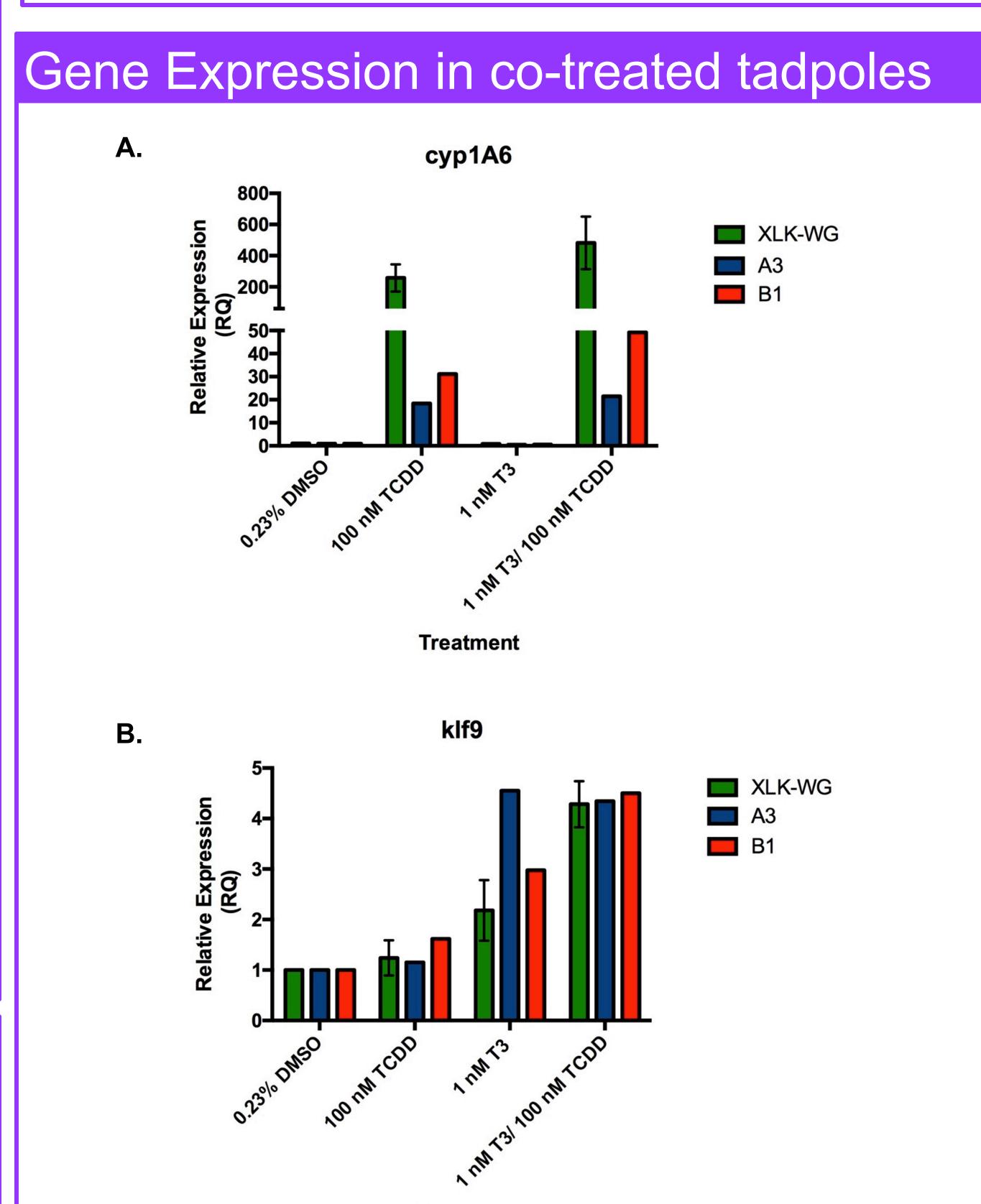


Figure 5. TCDD and T3 co-treatment increases cyp1A6 and klf9 expression in vitro. Whole tissue RNA extraction was performed on tadpoles treated with 0.25% DMSO, 100 nM TCDD, 1 nM T3, or 100 nM TCDD and 1 nM T3 1 or 4 days after the start of exposure. All tadpoles in this study were between Nieuwkoop and Faber stages 51-54. Differing letters symbolize statistical significance (Tukey, α =0.05). Error bars represent standard error of the mean.

Conclusions

- In XLK-WG cells, *cyp1A6* and *klf9* induction increased when treated with T3 and TCDD.
 - Both AHR1 α and AHR1 β are required for maximal *cyp1A6* induction following T3/TCDD co-treatment, suggesting that both are required for usual AHR/TR interactions to occur.
- Only one of the paralogs is necessary for *klf9* increased induction in response to T3/TCDD cotreatment, indicating redundant function in AHR/TR interaction. In vivo studies did not show enhanced induction of *cyp1A6* following treatment. However, the synergistic effect was seen in the *klf*9 gene.

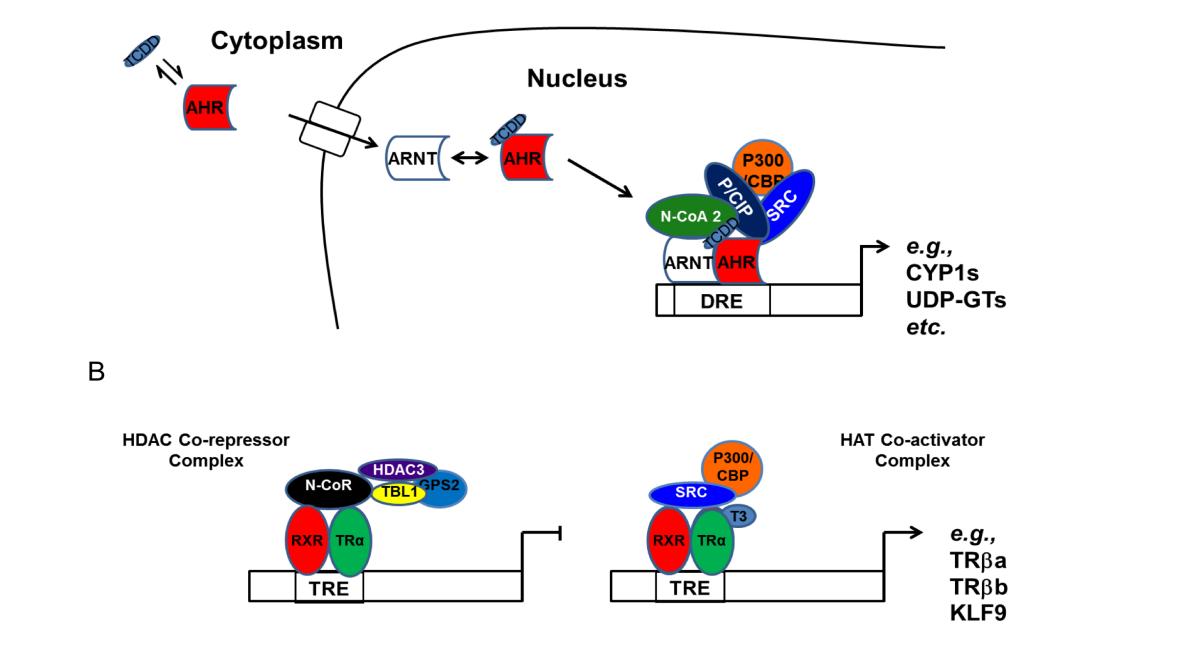
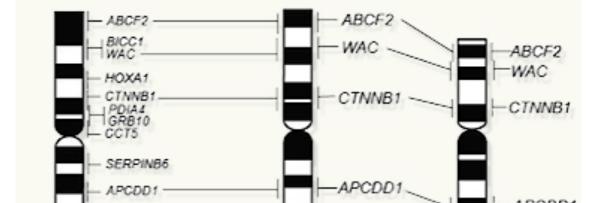



Figure 2. AHR and TR regulate the expression of downstream targets. (A) The TCDD response pathway. Unliganded AHR is located in the cytoplasm. Upon TCDD binding, AHR translocates from the cytoplasm to the nucleus where it forms a heterodimer with the aryl hydrocarbon nuclear translocator (ARNT) and binds to dioxin response elements (DREs), recruiting activating cofactors that initiate the transcription of target genes. (**B**) The TR α dual function model. TR α /RXR heterodimer along with the histone de-acetylation (HDAC) co-repressor complex is constitutively bound to DNA at the thyroid hormone response elements (TREs). Upon T3-TRα binding, the co-repressors are dissociated and replaced by activating cofactors with histone acetyl transferase (HAT) activity.⁴

B. AHR paralogs in *X. laevis*

While humans have a single AHR, X. laevis express two paralogous AHR proteins, AHR1α and AHR1 β due to a gene duplication event

Acknowledgments

I would like to thank Dr. Powell for all his help and support throughout this project. I would also like to acknowledge my fellow Powell lab members, both past and present for all of their hard work, patience, and encouragement. You have all been an integral part of the body of knowledge we are building together. Finally, I'd like to thank Kenyon Summer Science for their gracious financial support.

References

Brent, Gregory A. (2012). Mechanisms of thyroid hormone action. The Journal of Clinical Investigation. 122: 3035-3043. Denison, M. S. and Nagy, S. R. 2003. Activation of the aryl hydrocarbon receptor by structurally diverse exongenous and endogenous chemicals. Annu. Rev. Pharmacol. Toxicol. 43: 309:334. Pollet, Nicolas. (2010). Expressions of immune genes during metamorphosis of Xenopus: a survey. FBS. 15: 348-358. 4) Wen, Luan, and Yun-Bo Shi. "Unliganded Thyroid Hormone Receptor A Controls Developmental Timing in Xenopus Tropicalis." Endocrinology 156.2 (2015): 721–734. PMC. Web. 5 Oct. 2017. Session, Adam M. et al. "Genome Evolution in the Allotetraploid Frog Xenopus Laevis." Nature 538.7625 (2016): 336-343. PMC.

~40 mya. The paralogous AHR1s have an 86% amino acid identity and exhibit different expression levels *in vivo*.⁵ Understanding the divergent function of *the X*.

laevis AHRs betters our understanding of the single human AHR.

F APCDD1 LRRCC1 -+ EEF1D EEF1D Xla6L Xla6S Xtr6 (9) (6) Figure 3. X. laevis (Xla) homeologous chromosomes. AHR1 paralogs reside on chromosome 6 long (1α) and chromosome 6 short (1 β). Xenopus tropicalis (Xtr) chromosome is shown as a naming reference.⁶

Treatment

Figure 4. TCDD and T3 co-treatment induces target genes in wild-type and mutant cells. XLK-WG, A3, and B1 cells treated with 0.23% DMSO, 100 nM TCDD, 50 nM T3, or 100 nM TCDD and 50 nM T3 for 24 hours. Total RNA, purified from lysed cells, was reverse-transcribed. Relative amounts of cyp1a6 and klf9 transcripts were determined using qPCR. XLK-WG bars represent three biological replicates (n=3). A3 and B1 bars represent a single biological replicate (n=1). Fold induction was determined using $\Delta\Delta$ Ct method with β -actin serving as the endogenous control.

Matsuda Y, Uno Y, Kondo M, Gilchrist M, J, Zorn A, M, Rokhsar D, S, Schmid M, Taira M, A New Nomenclature of Xenopus laevis Chromosomes Based on the Phylogenetic Relationship to Silurana/ Xenopus tropicalis. Cytogenet Genome Res 2015;145:187-191 Freeburg, S. H., Engelbrecht, E., Powell, W. H. (2017). Subfunctionalization of Paralogous Aryl Hydrocarbon Receptors from the Frog Xenopus laevis: Distinct Target Genes and Differential Responses to Specific Antagonists in a Single Cell Type. *Toxicol Sci* doi: 10.1093/toxsci/kfw212, 10.1093/toxsci/kfw212.