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■ Abstract Flies can learn. For the past 25 years, researchers have isolated mu-
tants, engineered mutants with transgenes, and tested likely suspect mutants from
other screens for learning ability. There have been notable surprises—conventional
second messenger systems co-opted for intricate associative learning tasks, two en-
tirely separate forms of long-term memory, a cell-adhesion molecule that is necessary
for short-term memory. The most recent surprise is the mechanistic kinship revealed
between learning and addictive drug response behaviors in flies. The flow of new in-
sight is likely to quicken with the completion of the fly genome and the arrival of more
selective methods of gene expression.

INTRODUCTION

When Benzer started his genetic dissection of behavior the conventional reaction
was mixed, to put it politely. After a large seminar at Woods Hole an entrenched
physiologist was heard to remark, “We have nothing to fear from this man.” Nev-
ertheless, other neurophysiologists, including some great ones, recognized a smart
man with a genuinely new approach—one that could truly alter the field (Weiner
1999).

Thirty years later the sanguine and sourpuss viewpoints both have their merits.
Forward-genetic studies of behavior—measuring a behavioral response in some
genetically opportune animal, mutagenizing, selecting mutant individuals that
perform the behavior aberrantly, mapping and cloning the affected genes—have
provided simple, startling insights into learning and memory mechanisms. With
mutants, with luck, one can leap in a single bound from a molecule to a mem-
ory process. However, the leap is perilous and insubstantial—it omits information
about intermediate stages of cell biology, neurophysiology, and anatomy—and
filling out the picture necessarily depends on inferences from other methods.

A principal advantage, and a concomitant disadvantage, of the forward-genetic
approach is that it circumvents rational thought. Mutating, mapping, and cloning
genes that affect a behavior such as learning can provide information totally for-
eign to current hypotheses. This can revolutionize our thinking, as the discovery
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of homeobox gene complexes did to development (Gehring & Hiromi 1986).
Nevertheless, the genetic approach, viewed from inside, often looks like mind-
less stamp collecting—a fishing expedition, in the words of study section
reports.

Research with invertebrate systems, including insects, is similarly attractive
and repulsive at the same glance. Invertebrates have simple genomes, simple ner-
vous systems, and anthropomorphizable behaviors, such as recollection. They
also often have neuronal circuitry that is reproducible from animal to animal,
so one can compile a map of synaptic connections and a catalog of individual
neuronal functions by assembling information from many animals. However,
until recently, invertebrate animals were often taken as models of themselves
rather than as simplified versions of us. This attitude has changed lately, with
the demonstrated universality of genes and mechanisms and with the evident se-
quence similarity among the worm, fly, mouse, and human genomes (Rubin et al
2000).

Mutation-based studies of fruit fly learning started 30 years ago (Quinn et al
1974, Dudai et al 1976). This endeavour has been reviewed by Davis (1996) and
Dubnau & Tully (1998). Comparisons with other invertebrate systems, particularly
the marine snailAplysia californicaand honeybees,Apis mellifera, are covered
in detail by Mayford & Kandel (1999), Menzel (1999), and Carew (2000). Here
we concentrate onDrosophila, with particular attention to the relation between
learning and memory and behavioral responses to drugs.

Learning in Drosophila

Fruit flies can learn a lot of things. Most impressively for their trainers, they
can learn to run away from specific odors that they previously experienced with
electric shock (Quinn et al 1974, Tully & Quinn 1985). In contrast, hungry flies can
learn to run toward odors previously associated with sugar reward (Tempel et al
1983).

Flies can also learn visual, tactile, proprioceptive, and perhaps spatial cues
(Menne & Spatz 1977, Folkers 1982, Guo et al 1996, Booker & Quinn 1981,
Wustmann et al 1996, Wustmann & Heisenberg 1997). Not surprisingly, after intro-
spection, male flies learn to attenuate their courtship behavior after experiencing
rejection from females (Siegel & Hall 1979, Gailey et al 1984).

Memory after olfactory training persists for different periods depending on the
specific training regime. Training to sugar reward appears to elicit longer memories
than equivalent training to electric shock punishment, with surprising linear addi-
tivity of behavioral performance following the two reinforcements (Tempel et al
1983). Very strikingly, repetitive training with rest intervals interspersed (spaced
training) can produce memory that lasts for several days (Tully et al 1994). This
apparent requirement for spaced training parallels the protocol required for very-
long-term memory formation in other species, including humans.
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GETTING LEARNING MUTANTS

The genetic approach to learning is straightforward: (a) Mutagenize flies to produce
individual mutant progeny; (b) breed these advantageously to generate progeny
populations that are all affected at one gene; (c) test the mutant flies for their
ability to learn or to remember; (d ) assess them for behavioral, morphological, and
developmental normalcy; (e) genetically map the affected gene; and (f ) clone it if
possible.

1) Mutagenesis

The methods used are critical. Chemical mutagenesis (using ethyl methane sul-
fonate or ethyl nitroso urea) works with very high efficiency, but changes DNA
subtly, usually at a single nucleotide. Chemically induced mutants are therefore
relatively easy to produce but hard to clone. In contrast, mutagenesis by mobi-
lization of transposable elements (P-elements inDrosophila) can greatly facilitate
cloning because the identified transposon leaves a molecular tag on the inter-
rupted gene (Cooley et al 1988). On the downside, mutagenesis with transposons
is between threefold and tenfold less efficient than mutagenesis with chemicals,
depending how much faith and time one wishes to invest scoring transposition
events. Furthermore, transposon hops tend to disrupt genes wholesale. This is in
contrast to the single-nucleotide microsurgery that was critical to the behaviorally
based isolation of thednc1 and rut1 mutations as specific to learning. Benzer,
Quinn, and their colleagues (Dudai et al 1976, Quinn et al 1979, Livingstone et al
1984, Folkers et al 1993) mutagenized (with chemicals), bred, and behaviorally
tested about 5000 lines to obtain 4–6 good learning mutants. This effort took them
about four person-years. With less efficient transposon mutagenesis such an effort
would plausibly have entailed between 12 and 40 person-years—without the nu-
cleotide microsurgery. Rapid clonability comes at a price, unless researchers use
smart tricks. There are two established tricks: (a) selecting for genes that are pref-
erentially expressed in anatomical learning centers and (b) selecting for genetic
suppressors of female sterility caused by the mutantdunce. These are discussed
later.

2) Fly Breeding Methods

Fly breeding methods can dramatically affect the scope of the screen and also the
number of human lifetimes expended in getting mutants. About 20% of the fly
genome is on the X-chromosome—one copy in males. Most new mutations are
recessive (masked by a normal copy of the gene). Thus, finding new genes is much
easier if they are X-linked. Special fly stocks (with attached X chromosomes) make
such screening even easier—tenfold less labor than for other (autosomal) mutants.
This buys time, but eventually the rest of the genome has to be dealt with.
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3) Testing for Learning

To date, all the mutants isolated have been identified in tests for deficiencies in
olfactory learning. However, flies demonstrably learn to many cues (Quinn et al
1974, Tully & Quinn 1985, Tempel et al 1983, Menne & Spatz 1977, Guo et al
1996, Booker & Quinn 1981, Wustmann et al 1996, Wustmann & Heisenberg
1997). It is a matter of time and youth until new researchers isolate new mutants
using other tasks.

Also to date, a disproportionate number of the informative mutants (dunce,
rutabaga, amnesiac) have been isolated with a relatively crude, behaviorally frag-
ile test—that of Quinn et al (1974). Some new mutants, including one really
interesting one (volado, see below), were isolated with a behaviorally more robust
test. However, it is possible that the original screen is not as benighted as it looked
10 years ago. Seemingly less effective “sensitized” screens may be the best way
to get informative mutants.

In the first behavioral screen (Quinn et al 1974, 1979; Dudai et al 1976;
Livingstone et al 1984), about 4000 fly stocks carrying random, chemically in-
duced mutations in single genes were tested for their ability to learn in the olfactory
conditioning test. The first olfactory learning mutant identified in this paradigm,
by Byers in Benzer’s lab, wasdunce(Dudai et al 1976).dunceflies learn very
poorly in the olfactory paradigm, although they can sense odorants and shock
and they appear normal in other behaviors. Continuing this approach, several ad-
ditional mutants [rutabaga (Livingstone et al 1984),turnip (Choi et al 1991),
cabbage(Aceves-Pina & Quinn 1979),amnesiac(Quinn et al 1979), andradish
(Folkers et al 1993)] were identified—most by Sziber in Quinn’s lab.

A variant olfactory test (Tully & Quinn 1985) has now been used as a primary
screen (more than 2000 stocks tested for 3-h memory) to isolate 3 new mutants,
latheo(Boynton & Tully 1992),linotte(Dura et al 1993), andnalyot(DeZazzo et al
2000) and as a secondary screen to confirm 4 candidate learning mutants,leonardo,
(Skoulakis & Davis 1996), dPKA-RI (Goodwin et al 1997),volado(Grotewiel et al
1998), andNF1 (Guo et al 2000).

4a) Measurements of Sensory Acuity

With a mutant in hand, one has to measure the ability of mutant flies to perceive
the cues (conditioned stimulus) and reinforcement (unconditioned stimulus) and
to carry out the behavior. For olfactory learning, this means ability to smell the
odors, sense the electric shock, and run with apparent coordination in an appropriate
direction.

4b) General Assays for Normalcy

In evaluating a mutant, if one is honest, one has to decide whether the fly looks
and behaves normally and if not, whether the abnormality is related to the lack of
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learning. Not all sick mutants are irrelevant. Severeduncemutations confer partial
lethality and nearly total female sterility. Nevertheless, the original behaviorally
isolatedduncemutants (involving very partial loss of enzymatic function) live
and behave normally and breed almost normally, but have learning deficiencies
comparable to the severestduncegene mutants. Homozygousturnip flies can
barely get off the ground; however, heterozygousturnip flies live, walk, fly, and
learn fine, but they forget very rapidly (Quinn et al 1979, Tully & Quinn 1985,
Mihalek et al 1997). Deletion of the completevoladogene is lethal (compromising
other, more subtle, behavioral assays). However, removal of either one of the two
major splice forms of the gene transcript yields a healthy but learning-deficient fly
(Grotewiel et al 1998).

5) Genetic Mapping

There is no rocket science here, but hard work sometimes. Traditional recombi-
nation mapping using a behavioral assay is arduous. It involves recombining the
chromosome containing the behavioral mutation with a homologous chromosome
containing several evenly spaced morphological marker mutations, then genera-
tions of back-crosses, crosses to generate populations, and behavioral assays of
the populations to assess each recombinant chromosome (See Dudai et al 1976).
When necessary, mutations can be more finely mapped by using the extensive
collection of chromosomal deletions available inDrosophila (Byers et al 1981,
Folkers et al 1993). This allows positional cloning of otherwise inaccessible genes
(see below).

All these steps are circumvented if the mutation is transposon generated. In this
case, one simply takes mutant larvae from the population, squashes their salivary
glands, hybridizes cloned DNA from the transposon to the polytene chromosome
squashes, and notes the location to which transposon DNA has hybridized (see
Feany & Quinn 1995).

The availability of the entire fly genome sequence makes cloning and localizing
P-element–generated mutations even simpler. Identified DNA sequence from that
flanking the P-element can be used to search the fly genome database. The precise
insertion location of the transposon is then apparent in minutes.

6) Cloning the Gene

This is the payoff. In some cases [dunce= cAMP phosphodiesterase (Byers et al
1981, Davis & Kiger 1981, Chen et al 1986) and rutabaga= adenylyl cyclase (Liv-
ingstone et al 1984, Levin et al 1992)] it consolidates lucky enzymatic guesses as
to learning machinery into engraved metabolic truth. In other cases [amnesiac=
PACAP-like neuropeptide (Quinn et al 1979, Feany & Quinn 1995) andvolado=
α-integrin (Grotewiel et al 1998)], the forward-genetic approach can provide gen-
uinely new intellectual entrees into the learning process.
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6a) Selective Expression of Cloned Genes

Constructing transgenic flies with an extra, cloned gene is straightforward nowa-
days (Spradling 1986). The question is where, when, and how to express it. The
two promoters most frequently used to drive fly transgenes are the hsp70 promoter
and the GAL4 upstream activating sequence (GAL4-UAS).

The heat shock–inducible hsp70 promoter allows temporal control of transgene
expression, but promiscuously in all tissues. Transgenes inserted downstream
from this promoter can be induced before, during, or after a learning experience
to assess the role of a particular gene in learning or memory. Dominant-negative
(blocking) transgenes can be used to interrupt learning at defined times (Drain
et al 1991, Yin et al 1994). Alternatively, the wild-type gene can be reintroduced
and acutely expressed to restore normal retention to a mutant fly stock (Grotewiel
et al 1998, Guo et al 2000). Such restoration (called “transformation rescue” by
fly people) can provide definitive evidence that the correct gene has been identi-
fied from the mutant, and it allows one to ask when and where that gene product
might act. On the downside, Hsp70-driven transformation rescue does not always
work. Failure to rescue with an acutely expressed, Hsp70-driven, transgene may
occur because (a) misguided researchers have identified the wrong gene, (b) the
gene is required developmentally rather than acutely at the time of learning, (c)
promiscuous expression of the gene in all tissues destroys the anatomical specificity
required for learning a specific task, or (d) the transgene happens not to be ex-
pressed at the critical level required for appropriate cell signaling.

The GAL4 system (Brand & Perrimon 1993), when used astutely, allows in-
troduced genes to be expressed selectively in chosen tissues or subsets of cells,
but usually without temporal control. The GAL4 system is binary, involving two
separate transgene constructs in flies. The yeast transcription factor GAL4 lacks a
functional homolog in flies. It can therefore be used to drive expression of other
transgenes that are introduced in separate constructs downstream from a GAL4-
responsive promoter, GAL4-UAS. Briefly, one transformsDrosophilawith a de-
sired transgene, downstream from a GAL4-UAS. Normally, this transgene will not
be expressed. One then makes, or sends away for, another fly stock containing a
second P-element transgene—this time consisting of the gene for the GAL4 tran-
scription factor on an intrinsically weak promoter. In this case, experience shows,
the introduced GAL4 gene will usually respond to the collection of enhancers in
its neighborhood and will frequently be expressed in the same subset of cells or
tissues as its nearest-neighbor gene. There are several ways, using stainable re-
porter genes, to identify the set of tissues expressing GAL4 protein in a particular
fly stock.

Next one simply crosses the two fly stocks containing the two separate transgene
constructs—one with the regionally expressed GAL4 transcription factor, the other
with the GAL4-UAS promoter–driven, learning-related gene of choice. Double-
transgenic progeny from this cross will express the learning-related protein with the
regional specificity of the GAL4 line used. This technique is universally important
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in Drosophilabecause a large number of region-restricted GAL4 driver lines have
been generated and catalogued that express GAL4 in different subregions of the
adult fly brain (Armstrong et al 1995, Yang et al 1995). Consequently, given a
cloned gene that might be related to learning (be it wild type, hyperactive, or
engineered for dominant-negative blocking), one can, by simple crosses, arrange
to express the gene in a number of brain structures of interest and generally to see
what genes influence what memories in what tissues.

Tissue-specific expression of transgenes can also be used to rescue learning and
memory of mutant flies. With this method one can identify those brain structures
where expression is sufficient for learning (Zars et al 2000, Waddell et al 2000).
In one defining instance, appropriate tissue-specific expression of a wild-type
transgene has rescued learning and memory performance in a mutant when acute
and developmentally sustained expression of that gene with the hsp70 promoter
has worked poorly (DeZazzo et al 1999, Waddell et al 2000).

6b) Analysis of Cloned Gene Product(s)

This is often conceptually mundane, but it can yield momentous results. For ex-
ample, Davis and colleagues (Davis & Kiger 1981, Chen et al 1986, Levin et al
1992, Nighorn et al 1991, Han et al 1992) cloned or helped clone thedunceand
rutabagagenes, found that both genes were highly expressed in anatomical struc-
tures (the mushroom bodies) that were known to be involved in olfactory learning,
and thereafter undertook a successful search for other genes that were expressed
with similar regional specificity (Skoulakis & Davis 1996, Grotewiel et al 1998),
with important findings.

INFORMATION WE HAVE GAINED
FROM THE MUTANTS

Chemical Mutagenesis

A fragile, seemingly primitive olfactory learning paradigm was used, along with
chemical mutagenisis and brute labor, to isolate the mutantsdunce, rutabaga,
amnesiac, radish, andturnip.

dunce The firstduncemutant (Dudai et al 1976) was isolated by its deficient
olfactory learning in the assay of Quinn et al (1974). Other mutations in this gene
came from a screen for female sterility mutants (Mohler 1977). Thednc locus
is very complex, stretched over at least 148 kilobases (Davis & Davidson 1984,
1986; Chen et al 1986, 1987; Qui et al 1991). Thedncgene encodes at least 10
alternative RNA splice-forms and presumably many variant DNC proteins.

rutabaga The originalrut mutation (Livingstone et al 1984) was isolated, like
dunce, because of its learning deficiency in the assay of Quinn et al (1974). Other
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P-element-induced alleles ofrut were isolated because they suppressed the female
sterility of dncmutants (Bellen et al 1987, Levin et al 1992).

Molecular cloning of both thedncandrut genes was aided, first by the directed
identification in these mutant stocks of biochemical defects (Byers et al 1981, Davis
& Kiger 1981, Livingstone et al 1984). The correspondence of metabolic function
of thedncandrut gene products was astonishing. The two enzymes lay in the same
biochemical pathway, a pathway used throughout the animal kingdom for cellu-
lar responses to outside messengers. Therut gene encodes a Ca2+/Calmodulin-
stimulated (type I) adenylate cyclase, AC (Levin et al 1992); thedncgene encodes
cAMP phosphodiesterase (Chen et al 1986, Qiu et al 1991). Therefore, RUT makes
cAMP and DNC degrades it.

amnesiac The firstamnesiacmutation was identified in a deliberate screen for
mutants that affected memory (Quinn et al 1979). However, theamnesiacgene was
cloned by a trick from a P-element-induced allele (Feany & Quinn 1995) and has
been repeatedly cloned since (e.g. Moore et al 1998, Toba et al 1999). Theamne-
siacgene encodes a protein that has sequence features of a pre-pro-neuropeptide
and that has limited homology to the mammalian neuropeptide/hormone pitu-
itary adenylyl cyclase–activating peptide (PACAP) (Vaudry et al 2000). This
finding makes sense because neuropeptides often act in parallel with conven-
tional monoamine neurotransmitters to provide reinforcement. The homology to
PACAP, together with supporting genetic and biochemical evidence, indicates
that the AMN peptide stimulates cAMP synthesis. The piece of evidence that
led to a clonableamnallele (Feany & Quinn 1995) is this: Severe alleles of the
learning mutantdnc are learning defective and female sterile. A P-element in-
sertion in theamn gene rescues the female fertility phenotype of mutantdnc
females. Therefore, mutations in theamn gene act to counter the effect of
duncemutations (i.e. too much cAMP). Furthermore,amn mutants are hyper-
sensitive to ethanol (Moore et al 1998) as well as being forgetful (discussed
below). Feedingamn flies forskolin (an activator of adenylate cyclases) or in-
creasing PKA activity reverts ethanol sensitivity to wild-type levels (Moore et al
1998).

No one knows whether the AMN peptide is a true homolog of mammalian
PACAP. Nevertheless, artificial application of mammalian PACAP38 induces
changes in synaptic signaling at the fly larval neuromuscular junction (NMJ)
(Zhong & Pena 1995). These PACAP-induced changes in flies are mediated by the
cAMP cascade—as with PACAP in mammals and, evidently, the AMN peptide(s)
in flies (Feany & Quinn 1995, Moore et al 1998). The PACAP38 peptide, applied
to the fly NMJ, elicits a slow inward current lasting tens of seconds, followed by
an enhanced outward K+ current. These responses to PACAP are absent inrut
mutants (Zhong 1995), indicating that RUT adenylyl cyclase activation, and hence
cAMP signaling, is required for PACAP action. This NMJ response actually re-
quires the simultaneous activation of both the Ras and cAMP pathways; activation
of either pathway alone is insufficient for synaptic change (Zhong 1995). Analysis
of the PACAP response in flies mutant for the Ras GTPase-activating protein, NF1,
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which negatively regulates ras in mammals, indicates that the signal tranduction
events downstream from PACAP are complex. The PACAP response is abolished
in NF1mutants, but it can be restored by pharmacological stimulation of the cAMP
cascade (Guo et al 1997).

radish, Anesthesia-Resistant Memory, and Long-Term MemoryLong-term
memory has been historically defined as (a) memory that persists for a long time;
(b) memory that is dependent on spaced training; (c) memory that is resistant to
disruption by anesthesia, electroconvulsive shock, cooling, concussion, or other
agents that interfere with patterned neural activity; (d) memory that is dependent on
new protein synthesis; and (e) memory that requires the cAMP response-element
binding protein (CREB) transcription factor (Yin et al 1994, Tully et al 1994).
In brief, Drosophilamutants seem to further resolve the previous definitions of
long-term memory into two separate parts.

Theradishmutation selectively eliminates anesthesia-resistant memory (ARM)
(Folkers et al 1993), leaving protein synthesis–dependent memory intact (Tully et al
1994). ARM occurs after ordinary training and lasts at least 3 days (Tully et al
1994). Therefore, ARM is a legitimate form of long-term memory.

Transgenic flies with an inhibitory form of a fly CREB transcription factor,
dCREBb, have normal ARM (see above). However, they are completely devoid
of protein synthesis–dependent long-term memory (Yin et al 1994, Tully et al
1994). This form of long-term memory lasts for at least 7 days and requires spaced
training, protein synthesis, and the transcription factor CREB. We call it long last-
ing long-term memory (LLTM) to distinguish it from ARM. Additionally, startling
results have been reported (Yin et al 1995a) that indicate that transgenic flies with a
superabundance of active CREB have “flashbulb memory”—memory that persists
for days after a (normally ephemeral) single training trial.These experiments have
not been pursued as expected.

The radish mutant provides a unique handle on ARM (Folkers et al 1993).
Twenty-four hours after spaced training, memory is composed of two experimen-
tally separable portions: Half the 24-hour memory can be abolished by inhibiting
protein synthesis, and the other half can be abolished by thersh mutation (Tully
et al 1994, Yin et al 1994). Flies that are fed the protein synthesis inhibitor cyclo-
heximide, or flies that express an inhibitory CREB transgene, display only half the
normal 24-hour memory. Flies with both the drug inhibitor and the transgene still
have half this memory, indicating that blocking CREB transcription and block-
ing most of protein synthesis affect the same process to the same extent. Mutant
rsh flies also show only half-normal 24-hour memory. However, introducing the
inhibitory CREB transgene into thershmutant eliminates all 24-hour memory, in-
dicating thatrsh and CREB affect entirely separate memory processes. There are
two interpretations of these experiments: (a) Protein synthesis–dependent memory
is exactly equivalent to CREB-dependent memory. The CREB transcription factor
lies at or near the top of the gene regulation cascade that leads to LLTM and is a
bottleneck for that cascade; all transcription-dependent memory goes through it.
(b) A second, completely separable, form of long-term memory requires a normal
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rshgene (Folkers et al 1993). Mutantrshflies are entirely lacking in consolidated
ARM (Folkers et al 1993, Tully et al 1994).

Thersh mutation has been localized to a 180-kb region of the X-chromosome
by genetic mapping. DNA spanning the interval has been cloned and sequenced in
its entirety by the genome project. Several interesting candidate genes within the
interval are currently being tested for arsh-specific mutation.

turnip This odd mutant implicates the protein kinase C (PKC) pathway (Choi
et al 1991). Homozygoustur mutant flies are sluggish and have a reduced response
to electric shock (Mihalek et al 1997). However, heterozygoustur/+ flies are
healthy and behaviorally responsive. They learn normally, but memory decays
rapidly (Quinn et al 1979, Tully & Quinn 1985, Choi et al 1991, Mihalek et al
1997). Thetur mutation comaps, in a dose-dependent manner, with low PKC
activity. However, the mutation does not lie in or near any of the identified fly
genes encoding PKC family members (Choi et al 1991).

P-Element Screening

Tully and colleagues have performed a P-element-based behavioral screen for
learning and memory mutants. The genes affected in P-element-induced mutations
are readily clonable. They have reported three new mutants,latheo, linotte, and
nalyot(Boynton & Tully 1992, Dura et al 1993, DeZazzo et al 2000).

latheo Thelatheogene encodes a component of the origin recognition complex
(Pinto et al 1999). Complete loss-of-functionlat mutations are lethal. Partial loss-
of-function mutants learn poorly but lack mushroom bodies, a finding that bodes
ill for learning specificity of the gene. Intriguingly, however, LAT protein is de-
tectable in presynaptic boutons, and the NMJ oflat mutants has abnormal synaptic
properties (Rohrbough et al 1999). Therefore, it is conceivable thatlat encodes
a multifunctional protein involved in both DNA replication and synaptic plasti-
city. This is an example of the unique strength of a forward-genetic approach that
assumes nothing besides the fact that single gene mutations can impact learning
performance. It has provided completely unexpected novel information.

linotte The identity of the gene affected in thelinotte mutant (Dura et al 1993)
is disputed. Thelio gene either encodes a novel protein (Bolwig et al 1995) or
it is an allele of thederailedreceptor tyrosine kinase (Dura et al 1995). Regard-
less,lio mutants have structural brain defects that extend to the mushroom bodies
and central complex (Moreau-Fauvarque et al 1998, Simon et al 1998). Whether
these defects are responsible for the retarded learning performance, however, is
undetermined.

nalyot nalyotis an allele of the myb-related Adf1 transcription factor (DeZazzo
et al 2000).Adf1 is an essential gene, but partial loss-of-function mutants are
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viable. Such a partial mutation,nalP1, has a mild effect on learning and a pro-
nounced effect on long-term memory. ThenalP1 mutation also causes a modest
reduction in the number of synaptic boutons at the larval NMJ. On the contrary,
increasednal expression appears to cause a modest increase in the number of
boutons. The authors propose (a) that the Adf1 transcription factor is directly in-
volved in regulating the structural aspect of synaptic plasticity in concert with a
DrosophilaCREB that regulates functional plasticity (see below) and (b) that the
lack of structural plasticity measured in the mutant NMJ may underlie the long-
term memory deficit observed innal mutant flies after spaced training. However,
the experiments published do not directly address these interpretations. Although
they restored initial learning ofnalP1 flies to wild-type levels withnal transgenes,
they did not report rescue of the longer-term (1 or 7 day) memory defects. There-
fore, conclusive evidence that the long-term memory defect depends directly on
the NAL gene product remains to be provided. By the authors’ own assessment,
“the level of performance at earlier memory phases is not a reliable predictor of
performance at later memory stages”(p155).

Accuratenal expression is critical. Ectopic expression ofnal under the control
of several neural-specific or glial-specific GAL4 promoters is lethal. Furthermore,
ubiquitous expression of NAL, driven at high levels by the heat-shock promoter,
is actually deleterious to olfactory memory.

Using Neuroanatomy to Screen for Learning Genes

The products of thedunceandrutabagagenes are expressed at high levels in the
fly mushroom bodies (MBs) (Nighorn et al 1991, Han et al 1992), structures that
are central to olfactory learning (discussed below). In addition, the PKA catalytic
subunit encoded by theDC0 gene is also more abundant in MBs (Skoulakis et al
1993). However, reduceddncexpression in the MBs does not necessarily correlate
with learning deficiency (Qiu & Davis 1993). Furthermore, MB-enhanced expres-
sion has been argued to be due to the unusually high cell density and parallel
organization of the MB (Ito et al 1998). Notably though, not all genes appear to
be preferentially expressed in MBs, and Davis and coworkers have identified the
new learning mutantsleonardo(Skoulakis & Davis 1996) andvolado(Grotewiel
1998) using P-element-based enhancer trapping to visualize enriched expression
in the MBs.

volado Studies with this mutant implicate alteration of cell adhesion in the pro-
cess of short-term memory (Grotewiel et al 1998). Although a mechanistic under-
standing is currently lacking, we believe that studies of this gene product will
eventually provide key insight into the molecular events of synaptic remodeling
that are believed to underlie learning and memory.

Thevol gene was isolated because it is preferentially expressed in MBs. The
gene encodes two splice variants of anα-integrin. Integrins are cell-surface
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receptors that mediate cell adhesion and signal transduction (Hynes 1992).
Mutantvol flies are markedly reduced in short-term olfactory memory (Grotewiel
et al 1998). However, memory invol mutants can be fully rescued by heat-shock
induction of the shortvol cDNA transcript in adult flies, just prior to olfactory
training. Strikingly, the ability to rescue memory decays with the same kinetics as
vol RNA expression, a result strongly suggesting that the VOL integrin is acutely
needed for memory.

Rohrbough et al (2000) have reported a synaptic role for VOL, and other
Drosophila integrins also influence synaptic morphology and function (Beumer
et al 1999). It remains to be determined whether the memory deficit ofvol mu-
tants is due to chronic alteration in synaptic structure (caused by changess in cell
adhesion) that prevents modulation, or whether it is acute VOL signaling that is
critical for memory formation. It is also not known if cAMP signaling regulates
VOL-mediated cell adhesion.

leonardo The leonardogene was isolated, likevolado, because it is preferen-
tially expressed in MBs (Skoulakis & Davis 1996).leo mutant flies are defective
in olfactory learning and short-term memory. Theleo mutation affects the zeta
isoform of the mundanely named protein 14-3-3.

Proteins of the 14-3-3 family are involved in several intracellular signaling
pathways. They can activate and repress protein-kinase-C (PKC) activity (Aitken
et al 1995, Xiao et al 1995), activate tyrosine hydroxylase and tryptophan hy-
droxylase, the rate-limiting enzymes in catecholamine and serotonin biosynthesis
(Ichimura et al 1995), and interact with several signal-transduction cascades, in-
cluding RAF-1 in the mitogen-activated protein kinase (MAPK) pathway (Fantl
et al 1994, Freed et al 1994, Irie et al 1994, Li et al 1995).

The LEO protein is enriched in presynaptic termini, andleo mutants have
reduced synaptic transmission at the larval NMJ, especially under stress conditions
(Broadie et al 1997). The LEO gene product has been proposed as a candidate to
mediate voltage-dependent Ca2+ influx and presynaptic vesicle exocytosis.

LEO does in fact demonstrably interact with the presynaptically locatedDro-
sophila calcium-dependent potassium (KCa) channel Slowpoke (dSlo) via the
slowpoke-binding-protein Slob (Zhou et al 1999). Through this interaction LEO
regulates the voltage sensitivity of the dSlo channel (DiChiara & Reinhart 1995,
Cui et al 1997). Whether LEO also exerts an effect on synaptic efficacy via acti-
vation of PKA and/or the RAS/RAF mitogen-activated protein kinase cascade is
unknown.

Testing Available Mutants for Learning Deficiency

A shortcut approach to studying learning is to behaviorally assess ready-made
mutant stocks, in the hope that they have defects in learning or memory that are
relatively specific. Sometimes there are quick payoffs.
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Ddc Ddc mutations lie in the structural gene for aromatic-amino-acid-decar-
boxylase, a necessary enzyme on the pathways to the major monoamine neuro-
transmitters—serotonin, dopamine, and octopamine in invertebrates. Constitutive
Ddc mutations are lethal, but temperature-sensitive mutant stocks can be acutely
blocked in adulthood and are viable. Livingstone & Tempel (1983) and Tempel
et al (1984) temperature-shifted such mutants and tested their biochemistry and
learning behavior.Ddc mutant flies have lower serotonin and dopamine levels
after a few days at the restrictive temperature. In these flies learning was reduced
in accordance with the reduction in DDC enzyme activity (Tempel et al 1984).
Both our lab and others have had difficulty in repeating this work—in getting
temperature-shifted flies that were healthy and learning-deficient at the same time.

NF1 The inferred role of NF1 (a GTPase-activating protein forras), discussed
above withamnesiac, prompted direct learning measurements ofDrosophila NF1
mutant stocks. The mutant flies are in fact defective in olfactory learning (Guo
et al 2000). This defect can be rescued in adult flies by heat-shock induction of
either anNF1transgene or a PKA transgene. Therefore, the cell-signaling pathway
(identified in studies of the larval neuromuscular junction) leading from PACAP-
binding to synaptic enhancement also appears to mediate olfactory learning in the
adult. In humans theNF1 gene is linked to the human disease neurofibromatosis
(Shen et al 1996). Some neurofibromatosis patients have learning disabilities;
however, it is not known whether the learning impairment is due to an acute
role for NF1 in synaptic signaling or to brain-developmental consequences of the
mutation. Results from flies provide intriguing information bearing on this issue.
NF1flies are learning defective and small in size (Guo et al 2000, The et al 1997).
Their small size can be rescued by induction either of an NF1 or a PKA transgene
during development but not in adulthood (The et al 1997). In contrast, the learning
deficiency of “small”NF1 mutant flies can be rescued by induction either of an
NF1 or a PKA transgene in adults (Guo et al 2000)

Genetically Engineered Alterations of Learning and Memory

Generation of transgenic flies is straightforward and quick. Genes can be made
transiently inducible by cloning them downstream from the heat-shock-inducible
hsp70 promoter. Obtaining direct gene knockouts in flies is now possible (Rong
& Golic 2000) although it is methodologically tricky at present, but making and
introducing dominant-negative gene products is easy. This approach has been
useful in studies of learning and memory.

cAMP-Dependent Protein Kinase Knowing that levels of cAMP were central
to learning, Drain et al (1991) directed their attention to the obvious downstream
target of the cAMP signal, cAMP-dependent protein kinase (PKA). Induction of
inhibitory fragments of PKA before training blocked olfactory learning. This was
the first demonstration of transgenic alteration of learning. The role of PKA in
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learning was later confirmed by direct studies with mutants (Skoulakis et al 1993,
Li et al 1996, Goodwin et al 1997).

dCREB2 Similar experiments with theDrosophilagene for the cAMP-response-
element-binding protein (CREB) (Yin et al 1995b) were more consequential. They
showed that CREB-dependent gene expression is required for long-lasting long-
term memory (LLTM) after associative learning (discussed above in connection
with radish). Expression of an inhibitory (blocking) CREB gene abbreviates such
memory (Yin et al 1994). This is consistent with work in other species and suggests
that CREB-dependent transcription is critical for long-term memory formation.
Expression of an activating CREB has been reported to induce hypertrophied
long-term memory after one short training session (Yin et al 1995a). This result is
potentially revolutionary to memory studies However, it has not been followed up
in the manner one would have expected.

Analysis of the larval neuromuscular junction (NMJ) in learning mutants and in
flies carrying the inhibitory and activated CREB transgenes has indicated that the
cAMP cascade and CREB are directly involved in synaptic plasticity. Increased
neuronal activity (elevated viaether-a-go-goandShakermutants) and increased
cAMP concentration (elevated by thedncmutant) both induce exuberant presynap-
tic growth and increased synaptic transmission (measured physiologically at the
NMJ). The structural synaptic growth is accompanied by a reduction in levels of
the neural cell adhesion molecule (N-CAM) homologFasII (Schuster et al 1996).
Indeed, a concomitant reduction inFasII-mediated cell adhesion is critical to allow
synaptic growth. Mutant larvae with low levels ofFasII show exuberant synaptic
arborization at the NMJ. In contrast, larvae with higher levels ofFasII show re-
duced arborization. Structure does not necessarily reflect function. InFasII larvae
the average synaptic output is reduced, suggesting the normal aliquot of synaptic
release machinery is shared among an increased number of synapses.

NMJs ofdncmutant larvae are different. They have increased arborization and
an increased average output per bouton (Budnik et al 1990, Zhong et al 1992). These
results suggest that cAMP levels affect both structural and functional synaptic
change, whereasFasII affects only structure.

cAMP alters functional change, among other ways, via the CREB transcription
factor. Expression of the inhibitory CREB transgene indncmutant larvae blocks
functional but not structural plasticity (Davis et al 1996). In contrast, an activated
CREB transgene increases presynaptic transmitter release. These results suggest
that cAMP regulates functional synaptic plasticity via CREB and also structural
plasticity via aFasII-dependent pathway.

Adenylate Cyclase-Stimulatory G ProteinUnregulated Gs signaling apparently
blocks learning. Disruption of Gsα adenylate cyclase-stimulatory G protein me-
diated signaling in the MBs (done with GAL4 drivers), but not in the central
complex, absolutely abolished olfactory learning (Connolly et al 1996). These ex-
periments confirmed the idea that signaling through the cAMP second-messenger
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system—in the MBs—is essential for olfactory learning. These results are surpris-
ing in that the extent of the learning defect (they do not learn at all) greatly exceeds
that of flies that either have grossly disorganized or reduced MBs (Heisenberg et al
1985) or that lack MBs altogether as a result of chemical treatment that ablates
them (de Belle & Heisenberg 1994).

Ca2+/Calmodulin-Dependent Protein Kinase Calcium is an important fac-
tor in neuronal signaling. A major intracellular respondent of Ca2+ is type II
Ca2+/calmodulin-dependent protein kinase (CAMKII). A potential role for this
enzyme in associative and nonassociative behavioral plasticity was assessed by
expressing an inhibitory transgene (Griffith et al 1993, Jin et al 1998) under the
control of the heat-shock promoter in a similar manner to that employed for PKA
by Drain et al (1991). Induction of a CAMKII inhibitory transgene inhibits asso-
ciative learning measured in the courtship conditioning paradigm (Griffith et al
1993). The performance of these flies in olfactory associative conditioning has not
been reported.

The DrosophilaCAMKII gene gives rise to multiply spliced mRNAs. Eight
different isoforms have been identified that differ at the junction of the regulatory
and association domains of the kinase (Griffith & Greenspan 1993). This alternative
splicing produces CAMKII enzymes with altered substrate specificity and differ-
ing sensitivity to Ca2+/calmodulin binding (GuptaRoy et al 2000).Drosophila
CAMKII has many reported targets, most interestingly for the purposes of this
review, the eag K+ channel subunit, theleonardo-associated protein Slob (Zhou
et al 1999), the Adf1 transcription factor encoded by thenalyotgene (GuptaRoy
et al 2000), and Discs large protein (a PDZ family protein), which regulates the
clustering of synaptic molecules (Koh et al 1999).

ANATOMY OF DROSOPHILA LEARNING

Studies in many insects have indicated the importance of mushroom bodies (MBs)
in learning (Strausfeld et al 1998, Zars 2000). Insightful analysis of the MBs in
Drosophila has confirmed a role for these structures in olfactory learning and
memory. Mutant flies that were identified based on their defective MB anatomy
do not learn olfactory tasks (Heisenberg et al 1985). Similarly, chemical ablation
of MBs abolishes olfactory learning (de Belle & Heisenberg 1994).

The MBs are only two synapses away from olfactory reception. Information
from olfactory receptors on the antennae and maxillary palps travels via the an-
tennal lobes to the MB calyces. These calyces contain dendrites of the intrinsic
MB neurons, the Kenyon cells. Axons from these Kenyon cells project from the
calyx down the stalk-like pedunculus. Toward the front of the central brain the
pedunculus splits into five lobes (α, α′, β, β ′, andγ ) and the spur. The lobes are
assumed to be the synaptic output region of the MB, although input also comes
into the lobes.
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The function of the MBs is not exclusively olfactory (Heisenberg 1998, Straus-
feld et al 1998, Zars 2000). Although theDrosophilaMBs are dispensable for
several types of learning, including visual, tactile, and motor (Wolf et al 1998),
they are believed to receive multimodal sensory information. In fact, visual de-
privation reduces MB calycal volume (Barth & Heisenberg 1997). This structural
plasticity is absent in the learning mutantsdnc1 andamn1 (see below) and is there-
fore believed to reflect functional adaptation and long-term memory. Whether MBs
are required for consolidated memory of visual stimuli or any other nonolfactory
task has not been tested.

A stunning study (Liu et al 1999) has demonstrated that the MBs are required
for context generalization in visual learning, a basic cognitive process. Flies can
learn to associate visual patterns with the presence or absence of heat punishment
(Guo et al 1996). Following learning, they fly toward the pattern predicted to avoid
the heat. Wild-type flies can associate visual patterns with heat and are unaffected
by changes in the illumination conditions between training and testing trials—for
example, a change from monochromatic color to white light, or from intermittent
to steady light (Liu et al 1999). In contrast, flies that lack MBs—as a result of
chemical ablation—are unable to learn and remember the visual task if illumination
conditions are changed between training and testing. Nevertheless, these MB-less
flies are able to learn if the light conditions are kept constant. These results suggest
the MBs are essential for the fly to be able to extract relevant information from
multiply variable visual stimuli.

How the MBs actually function remains essentially mysterious (Heisenberg
1998). Their intricate anatomical organization, with lobes projecting in three or-
thogonal directions in the fly brain, is conceptually intriguing (Strausfeld 1976,
Strausfeld et al 1998, Crittenden et al 1998). The only simple MB feature that we
can see is a functional parallel with another system that is critical to learning, the
hippocampal–entorhinal cortex system in mammals. Both systems show elegantly
regular, only slightly scrutable anatomical organization and appear suited to deal
with complex, multimodal assemblies of information.

It is now clear that even among the intrinsic cells of the MB, the Kenyon cells,
there is great diversity. Multiple subpopulations of Kenyon cells with different pro-
jection patterns are distinguishable by different gene expression (Yang et al 1995,
Ito et al 1997). Localization of learning-related gene products has indicated the
MBs as a critical site of cAMP cascade action in olfactory learning (see Figure 1).
The products of thednc, rut, andDC0 genes are all preferentially expressed in
the MB Kenyon cells (Nighorn et al 1991, Han et al 1992, Skoulakis et al 1993).
In fact, expression ofrut in the MBs (using the GAL4 system) is sufficient for
olfactory learning (Zars et al 2000).

We, working with others, have also used the GAL4 method to confirm the
importance in memory of two large Dorsal Paired Medial (DPM) cells that express
theamngene product (Waddell et al 2000). Restoration ofamngene expression to
these cells reestablishes normal olfactory memory. AMN neuropeptide is provided
to the MB lobes by these large DPM neurons.
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Figure 1 A model for olfactory learning inDrosophila. A mushroom body (MB) neuron receives
convergent sensory input from olfactory presentation [via the antennoglomerular tract (AGT)
interneurons that synapse in the MB calyx] and electric shock (via modulatory neurons that release
the AMN neuropeptide, perhaps with a monoamine). Coincident activity of these two input paths
triggers a synergistic stimulation of the RUT adenylate cyclase and subsequently, elevation of
cAMP levels. Depending on the training paradigm, the cAMP elevation results either in a short-
lived modification of MB neuron excitability (short-term memory) or a long-lasting functional
and structural change (long-term memory). The duration of protein kinase (PKA) activation is a
critical factor (Muller 2000). Persistent PKA activation supports long-term memory in part through
activated cAMP response-element binding protein (CREB)-dependent transcription.
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A caveat of studies that use the GAL4 method is that regional redundancy of
expression cannot be easily discounted. Few GAL4 lines express only in the desir-
able brain region. It is conceivable that expression in the noncommon tissue or the
background expression is sufficient for the rescue. Using several different GAL4
driver-lines that have overlapping expression patterns can reduce this problem.

In a screen for learning mutants it is reasonable that one will obtain flies that are
grossly affected in structural brain anatomy and circuitry, as well as more subtle
mutations that leave the brain largely intact. This has been the case. Bothlatheo
andlinottehave notable brain defects in the mushroom bodies (Moreau-Fauvarque
et al 1998, Simon et al 1998, Pinto et al 1999).

FLIES ON DRUGS

Genes that affect learning are also involved in the response of flies and mammals
to drugs of human abuse (Berke & Hyman 2000). The first findings on this in flies
came from work with the inebriometer (Cohan & Hoffman 1986, Weber 1988,
Moore et al 1998). In this device flies on precarious, slanted perches inside a
glass cylinder are exposed to ethanol vapor in an air current. As the alcohol they
breathe increases, they (understandably) turn about, stagger, fall off their perches,
and finally tumble down through the inebriometer tube into a fraction collector.
Wild-type flies “elute” from the column with a peak at about 20 minutes. Various
sensitive or resistant mutants elute at different peak times. This is drug behavior
reduced to the methods of conventional chemistry.

The first ethanol-hypersensitive mutant characterized,cheapdate, turned out to
be a P-element allele of the memory mutantamnesiac. Following up on this finding,
Moore et al (1998) found that other learning mutations in the cAMP pathway—
rutabagaandDC0—also altered the flies’ susceptibility to ethanol. Apparently,
the signaling pathway first identified in memory formation in flies influences their
ability to handle ethanol.

Thus the same second-messenger pathway is implicated in fly learning and fly
ethanol behavior. Moreover, a handful of neurotransmitters known to stimulate this
pathway—the AMN neuropeptide and a number of monamime transmitters—also
appear as central in genetic studies of both behaviors.

Flies, acutely exposed to ethanol, stagger and fall over, as we do. Chronically
exposed flies become less sensitive to the sedative effects of the drug—also like
us (Scholz et al 2000). This functional drug tolerance is plausibly believed to
reflect adaptive neuronal changes resembling learning (Cunningham et al 1983,
Fadda & Rossetti 1998). Flies that have reduced octopamine levels (because of a
mutation in the tyramineβ-hydroxylase enzyme that synthesizes it) are impaired
in their ability to develop tolerance to ethanol (Scholz et al 2000). Octopamine
is plausibly involved in fly learning (Dudai et al 1987), and in the honeybee it
substitutes for positive reinforcement (sugar reward) in classical conditioning of
the proboscis extension response (Hammer & Menzel 1998).
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Cocaine is another drug of human abuse. Volatilized cocaine, administered to
flies, induces several odd behaviors (McClung & Hirsh 1998, Bainton et al 2000).
The easiest such behavior to measure is this: Following mechanical agitation that
shakes flies to the bottom of a tube, normal flies race to the top of the tube—negative
geotaxis. Cocaine decreases this upward mobility in a quantifiable, dose-dependent
manner (Bainton et al 2000).

Flies develop a behavioral sensitization to cocaine (McClung & Hirsh 1998,
1999). An enhanced behavioral response is observed following subsequent cocaine
exposure even after a single dose. Sensitization is thought to be a contributing
factor to addiction. As with ethanol-induced behaviors, the usual suspect molec-
ular components shown to affect learning influence cocaine-induced behaviors:
monoamines, G-protein-coupled receptor signaling, and cAMP cascade regulation.

The monoamine tyramine appears to be required for this sensitization (McClung
& Hirsh 1999). inactivemutant flies have low tyramine levels and do not show
behavioral sensitization, although their initial response to cocaine is similar to
wild-type flies. Tyramine may compete with octopamine for receptor binding or it
may potentiate the effects of the other monoamines, dopamine and serotonin, by
inhibiting their uptake. In most cases, changes in cAMP synthesis will be central to
the downstream effects. In fact, type II cAMP-dependent protein kinase regulatory
subunit mutant flies have decreased sensitivity to cocaine (and ethanol) and fail to
sensitize to repeated cocaine exposure (Park et al 2000).

Dopamine modulates the response ofDrosophilato cocaine, ethanol, and nico-
tine (Bainton et al 2000, Li et al 2000). Therefore, although the cellular targets of
these drugs are likely different, they all engage the fly dopaminergic system, and
hence the cAMP cascade, perhaps in a reward-based manner.

FUTURE PROSPECTS

Lucky for us fly teachers: New molecular genetic tools arrive quickly at our door,
often from fly researchers who have no interest in flies’ learning. A tool that looks
to be required for continued rapid progress, and one that seems imminent, is a
spatially selective method of regulating transgene expression with the addition of
temporal control.

The GAL4 method (Brand & Perrimon 1993) for tissue-selective transgene
expression brought new meaning to our little fly lives. Nevertheless—especially
for learning researchers—the method is retarded by a lack of ability to turn the
critical genes on and off at appropriate times.

It is quite likely that a given GAL4 driver, with a desired expression in the
adult brain, expresses in other, often unrelated tissue during development. Such
idiosyncratic expression of a transgene might well be developmentally lethal or
affect the behavior of the mature fly. In a time-dependent field like learning that
deals with acquisition and recollection, storage and retrieval, long-term and short-
term, time control is essential to dissecting processes. Fly learning researchers
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face a quandary. However, a solution beckons. It should be possible to temporally
block expression from GAL4 lines by combining the GAL4/UAS system with the
GAL80 protein that represses the GAL4 transcription factor (Lee & Luo 1999). If
a temperature-sensitive GAL80 can be developed it should be possible to keep the
developmentally expressed GAL4 (and any transgene under GAL4/UAS control)
inactive until adulthood simply by manipulating the temperature. In this manner
we would be able to add temporal control to the entire complement of brain region–
specific GAL4 lines that are already available.

Genetic dissection of neuroanatomy with the GAL4 system (e.g. Armstrong et al
1995, Yang et al 1995, Ito et al 1998) is helping us map the neural networks in the fly
brain and is concurrently providing us with tools to explore gene function in distinct
neurons. Understanding the functionality of the circuits is critical if we hope to
understand and model their properties. Despite plentiful analyses of the larval
NMJ and dissociated neuronal preparations (Wu et al 1998, Lee & O’Dowd 2000),
current technology is limiting physiological analyses of the intact adultDrosophila
brain. However, circuit physiology is currently being productively studied in the
MBs and connected neuropil of several larger insects—primarily cockroaches
(Mizunami et al 1998), locusts (Stopfer & Laurent 1999), and honeybees (Faber
et al 1999). Honeybees actually have smaller neurons on average than do flies. It is
likely that the methodology can be adapted to flies, given a scientist with sufficient
courage and dexterity. The combination of genetics and functional recording would
change the field.

Tully and colleagues are using current DNA chip technology to search for
learning-related genes. Finding the memory-relevant CREB target genes is of
great interest. The most exciting use of such genes is the possibility of histological
reporter systems for learning-related gene expression, or stainable antibodies for
proteins that are selectively upregulated or modified following learning. Such a
“tag” would allow one to identify the neurons that are modified in a functional
circuit underlying a particular learning behavior. This would promoteDrosophila
from one of the anatomically least tractable animals, with respect to functional
anatomy, to one of the most informative.

Interesting mutants come from all directions: anatomy screens, neurochemistry
screens, and fertility screens. Most recently, scientists have been isolating new
fly mutants that show an altered response to drugs (Moore et al 1998, Singh &
Heberlein 2000). In view of the demonstrated commonality of the genes involved in
the drug response and learning, some new molecular players will be relevant to the
learning process. The supply of candidate mutants should increase dramatically.

The availability of the entire fly genome sequence has already quickened re-
search. More interestingly, the BerkeleyDrosophilaGenome Project has generated
and catalogued a large number of P-element insertion lines (Spradling et al 1999).
If you are a lucky researcher, both a DNA sequence and a mutant fly stock for your
favorite gene are already available by mail. This availability should stir the hearts
of fly investigators to test their favorite mutants for learning defects, because the
approach is very easy and potentially very interesting.
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Nevertheless, in the end there will be no substitute for the head-butting forward-
genetic approach. As ever, this amounts to mutagenizing flies, selecting mutants
that have aberrant behavior, and cloning the affected genes. At heart this amounts
to walking the beaches and peeking into bottles, with the hope that nature might
have left a message inside. Some such messages have enlightened us about pattern
formation in development. With luck, they will enlighten us about our capacity to
remember.
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