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Abstract:

 

We used birds, butterflies, tiger beetles, mean annual precipitation, and spatial statistical models to
investigate the applicability of using indicators of species richness for conservation planning on a continental
scale. The models were applied to data collected on three grids of squares (each square 275 or 350 km on a
side) covering North America, the Indian subcontinent, and Australia. We applied spatial statistical modeling
techniques to determine the viability of using a single or multiple indicators to predict spatial patterns of spe-
cies diversity of ecologically and phylogenetically unrelated taxa. Spatial models are optimal for these analy-
ses because species data typically are not spatially independent, primarily owing to dispersion effects. Further-
more, spatial models can be used to predict species numbers in areas where no observed data are available.
We found that the number of tiger beetle species is a useful indicator of the number of butterfly species in
North America and of the number of bird species on the Indian subcontinent, but it is not so useful as an in-
dicator of either the number of bird or butterfly species in Australia or of the number of bird species in North
America. We also found that the number of butterfly species is a useful indicator of the number of bird species
in North America and Australia and that mean annual precipitation is useful for predicting the number of
butterfly species in Australia. Although the general model used on all three continental areas is the same, the
relative importance of potential indicators in predicting spatial patterns of other taxa changes from continent
to continent. We attribute this change largely to differential biogeographical and ecological history, which
must be taken into account in the selection and testing of potential indicators.

 

Patrones Globales de Riqueza de Especies: Modelos Especiales para la Planificación de la Conservación Usando
Datos de Bioindicadores y Precipitación

 

Resumen:

 

En este estudio utilizamos aves, mariposas, escarabajos tigre, la precipitación media anual y
modelos estadísticos espaciales para investigar la utilidad de los indicadores biológicos de riqueza de especies
para la planificación, a escala continental, de la conservación. Los modelos estadísticos se aplicaron a datos
obtenidos en cuadrículas (cada cuadrado con 275 o 350 km de lado) que abarcaban Norte América, el Sub-
continente de India y Australia. Los modelos estadísticos espaciales permiten determinar la viabilidad del uso
de indicadores simples o múltiples para predecir patrones espaciales de riqueza de especies ecológica o filo-
genéticamente no relacionadas. Los modelos espaciales son óptimos para este tipo de análisis debido a que
los datos de las especies no son independientes del espacio donde éstas se encuentran, debido básicamente al
efecto de la dispersión. Estos modelos también son utilizados para predecir el número de especies en áreas
donde no hay datos disponibles. Los resultados mostraron que el número de especies de escarabajos tigre es
un indicador útil de la diversidad de mariposas en Norte América y de aves en el Subcontinente de India,
pero no es tan útil como indicador de aves y mariposas en Australia ni de aves en Norte América. El número
de especies de mariposas es un indicador útil de las aves en Norte América y Australia. La precipitación es
útil para predecir las mariposas en Australia. Aunque el modelo general utilizado en las tres áreas continen-
tales es el mismo, la importancia relativa de los indicadores potenciales para predecir patrones de dis-
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tribución espacial de otros taxones varía según el continente. Este variación se atribuye principalmente a
diferencias en la historia biogeográfica y ecológica. Estas diferencias deben ser consideradas cuando se prue-

 

ban los indicadores potenciales.

 

Introduction

 

Conservation policy decisions must integrate an over-
whelming number of biological and socioeconomic fac-
tors to prioritize conservation efforts adequately. In ad-
dition, economic and political pressures throughout the
world dictate that prioritization of these efforts be made
quickly and efficiently. Ideally, knowledge of biodiver-
sity, habitat loss, and human impact is needed to make
these decisions competently (Sisk et al. 1994).

In focusing on only one of these factors, biodiversity,
great logistical barriers exist when we measure even ob-
vious parameters such as species numbers and ende-
mism (Gentry 1992; Colwell & Coddington 1994; Ojeda
et al. 1995; Pimm et al. 1995). Methods to study and un-
derstand biodiversity must take into account limited re-
sources and a paucity of trained personnel, especially in
developing countries. One of the methods proposed to
resolve these problems is the use of well known bioindi-
cator taxa that are quickly and easily studied but whose
patterns are likely to be representative of many other spe-
cies (Landres et al. 1988; Noss 1990; Brown 1991; Kre-
men 1992, 1994; Oliver & Beattie 1993; Pearson 1994). 

Because many conservation decisions today are made
at a large geographical scale (hundreds or thousands of
square kilometers), indicator taxa have become more
useful. This large-scale assessment has proven most use-
ful in resolving initial priorities, especially in developing
areas where detailed surveys are unavailable (Kuliopulos
1990). An additional advantage is that patterns of biodi-
versity at large regional scales are generally the product
of only a few factors, such as origination and extinction
(Cracraft 1992; Rosenzweig 1995), and may be generally
represented by one or more indicator taxa. Conversely,
at small regional scales, biodiversity patterns are the
product of these same factors plus numerous additional
factors such as immigration and emigration (Gaston &
Blackburn 1996). Thus, the greater number of varying
factors makes resultant patterns less likely to be shared
by different taxa at small geographical scales. In addi-
tion, at small scales, single habitats or ecosystems are of-
ten so unique that they are less likely to be broadly rep-
resented by a single or a small number of indicator taxa
(Currie 1991; Prendergast et al. 1993; Curnutt et al.
1994; Margules & Gaston 1994; Thomas & Abery 1995). 

The interests of biogeographers (Fischer 1960; Pianka
1966; Haffer 1969; Wilson 1974; Schall & Pianka 1978;
Huston 1979; McCoy & Connor 1980; Letcher & Harvey
1994) and conservation planners (Myers 1990; Ceballos
& Brown 1995; Kremen 1994) have melded in studies of

the spatial distribution of species numbers and endem-
ics to apply bioindicators as an important technique for
the preliminary prioritization of conservation efforts.
Earlier, Pearson and Cassola (1992) and Pearson and
Ghorpade (1989) proposed that the family of tiger bee-
tles (Cicindelidae) be used as an indicator for quickly
and accurately determining areas of high diversity and
endemism on a continental scale. Pearson and Cassola
(1992) found that tiger beetle species numbers and but-
terfly and bird species numbers were strongly correlated
on large grids of squares, 275 or 350 km per side. But
they failed to take into account spatial correlations in
the data and, consequently, made assumptions that
likely invalidated their inferences and conclusions. Car-
roll and Pearson (1998) refined the methodology and de-
veloped a spatial statistical model for comparing tiger
beetles and butterfly species numbers in North America.
As expected, latitude and longitude (Pagel et al. 1991)
were found to be critical in the prediction of spatial pat-
terns of butterflies. Also, tiger beetles were found to be
an effective bioindicator of the numbers of butterfly spe-
cies. Using the observed spatial dependence and the re-
lationship between the numbers of tiger beetle species
and butterfly species, Carroll and Pearson (1998) dem-
onstrated that accurate prediction is possible in regions
for which data are unavailable but which are close to ar-
eas where data have been collected. 

We have expanded on previous research by develop-
ing and testing spatial statistical models used to predict
areal species distributions on similarly gridded squares
across three large continental regions—North America
north of Mexico, the Indian subcontinent, and Australia.
We used species numbers of tiger beetles and average
annual rainfall to predict numbers of species of butter-
flies. Furthermore, we used species numbers of tiger
beetles, species numbers of butterflies, and average an-
nual rainfall to predict numbers of species of birds. Birds
and butterflies are two of the few taxa (in addition to ti-
ger beetles) for which relatively accurate global data ex-
ist (Brown 1991; Pomeroy 1993; Beccaloni & Gaston
1994; Kremen 1994; Balmford & Long 1995).

Beyond the logistical advantages of modeling using
these three taxa, they represent a breadth of ecological
trophic levels, including predators (tiger beetles), herbi-
vore/nectivores (butterflies), gramnivores, insectivores,
frugivores, and top carnivores (birds). These three taxa
also represent a range of vagility from intercontinental
movements (birds) to wide local dispersal (butterflies)
and limited dispersal (tiger beetles). Thus, any strong re-
lations of species spatial patterns among such ecologi-
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cally and behaviorally diverse taxa make the indicators
potentially even more reliable and useful (Conroy & Noon
1996). Because some evidence indicates that precipita-
tion patterns can have a strong influence on species rich-
ness, perhaps related to a combination of productivity
and evapotranspiration rates (Currie 1991; Pimm & Gittle-
man 1992), we also incorporated into the model the aver-
age annual precipitation within each square.

At this relatively large geographical scale, we assumed
that most terrestrial taxa are under similar biogeo-
graphic influences, and these common factors cause pat-
terns such as spatial distributions of species over latitudi-
nal gradients (Currie 1991; Rohde 1992; Kaufman 1995).
At the same time, most taxa within a continental area are
influenced by topography, barriers to dispersal (Gaston
& Blackburn 1996), centers of evolution (Cracraft 1994),
and precipitation patterns (Smith et al. 1994) unique to
that continent (Mani 1974; Keast 1981). Our general hy-
pothesis is that, because of these abiotic and biotic pat-
terns, a carefully selected taxon or suite of taxa can be
used to repesent reliably the spatial patterns of many phy-
logenetically related and unrelated species’ distributions
with general spatial modeling techniques applied to each
continental area. In the process of developing and testing
the models, we can obtain an indication of the relative im-
portance of the abiotic (longitude, latitude, and precipita-
tion) and biotic (species numbers of bioindicator taxa)
predictor variables in predicting species numbers of phy-
logenetically and ecologically unrelated taxa. 

 

Methods

 

To determine the effectiveness of using biotic and abi-
otic indicators of species numbers, we analyzed data col-

lected in North America, the Indian subcontinent, and
Australia (see Appendix). Previous studies have shown
that squares between 275 and 350 km per side are con-
venient sizes to organize species numbers data (Pearson
& Cassola 1992). For instance, squares of this size were
the largest within which two to five collections or obser-
vations of tiger beetles will be representative of the en-
tire square (Pearson & Ghorpade 1989). These squares
were small enough to minimize the number of different
habitats or extreme differences in rainfall without be-
coming so narrow that the relations of spatial patterns
among different taxa were negated (Prendergast et al.
1993). The grid for North America contained 208
squares (Figs. 1 & 2) and for the Indian subcontinent 61
squares (Fig. 3); both grids had squares 275 km on a
side. Because the fauna in Australia was less well known,
we increased the size of the squares to 350 km per side.
For Australia the grid contained 67 squares (Fig. 4).
When it was not feasible (primarily in coastal regions) to
obtain exact squares, as far as possible squares were es-
tablished within areas approximately equal to those of
the other squares.

For a methodological model to be useful in even the
least-studied areas of the world, we used data types that
were most likely to be available in these areas. Hence,
we used regional publications, taxonomic revisions, and
private field notes to determine the total number of tiger
beetle species and breeding bird species (nonaquatic
and nonmarine) (Pizzey 1980; Ali & Ripley 1987; Na-
tional Geographic Society 1987), and, for Australia and
North America, the number of breeding butterfly spe-
cies (Common & Waterhouse 1982; Scott 1986) known
for each of the squares. Precipitation maps for each geo-
graphical area were used to average the annual precipi-
tation within each square.

Figure 1. Arrangement and numbers 
of grid squares across northern North 
America. Each square 275 km per 
side. 
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We built five predictive models. Complete details of
the construction of the types of models used in this re-
search are given by Carroll and Pearson (1998). In this
section we present the primary considerations associ-
ated with parameter estimation, hypothesis testing, and
cross-validation. For each of the three data sets, we built
a model to predict the number of bird species (the re-
sponse variable) in each square. For the North American
and Australian data, we initially used as predictor vari-
ables the number of butterfly species, the number of ti-
ger beetle species, and the average annual rainfall in the
corresponding square. Because no butterfly data were

available for India, we first treated only the number of ti-
ger beetle species and the average annual rainfall as pre-
dictor variables. For North America and Australia, we
also developed models to predict the number of butter-
fly species (the response variable) in a square, initially
using as predictor variables the number of tiger beetle
species and the average annual rainfall in the corre-
sponding square. After the initial models were fit and
model assumptions were validated, we applied hypothe-
sis tests and cross-validation techniques to determine
which of the predictor variables were useful for predict-
ing the areal distributions of the number of species of
the response variables.

We excluded the number of bird species as a predic-
tor variable in the models developed to predict the num-

Figure 2. Arrangement and numbers 
of grid squares across southern North 
America. Each square 275 km per 
side. 

Figure 3. Arrangement and numbers of grid squares 
across the Indian subcontinent. Each square 275 km 
per side.

Figure 4. Arrangement and numbers of grid squares 
across Australia. Each square 350 km per side.
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ber of butterfly species because collecting initial data on
the number of bird species in many unexplored areas is
highly labor intensive (Pearson & Cassola 1992).We an-
ticipated that models of the type we constructed may be
used in future conservation management decisions, and
in these situations it is unlikely that a taxon for which data
are difficult to collect would be used as a bioindicator of a
taxon for which data are more easily gathered. Further-
more, for the same reason we did not develop models to
predict the number of tiger beetle species in a region us-
ing birds and butterflies as bioindicator taxa. Naturally, in
areas where bird data are available, for instance, the pro-
cedure that we developed can be modified readily.

When building models to predict the number of but-
terfly species in both North America and Australia, we
found, using residual plots from initial models of the un-
transformed data and robust-resistant exploratory analy-
ses (Cressie & Horton 1987), that a log-transformation of
the butterfly data was necessary to stabilize the variance.
When the bird data were modeled no transformation
was required. In some analyses we Winsorized (Hampel
et al. 1986; Cressie 1991) the data to mitigate the possi-
ble influences of unusual observations on predictions
and inferences. Finally, we found by using cross-valida-
tion techniques and bivariate plots that the island effect
that influences the data collected on Tasmania in Austra-
lia made this observation appear unusual when com-
pared with the remainder of the Australia data. Hence,
because of its unique characteristics, this observation
was deleted from the data set. For all analyses, we re-
ported the results completed using transformed, edited
data when such modifications were required. 

To build the models, we identified the latitude and
longitude of the approximate center of each of the
squares and used these spatial coordinates to represent
the location of the square. We let 
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grees, and the prime indicates the transpose (an opera-
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variables with expectation zero and covariance matrix
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; and 
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 is the number observations in the data set. The
mean structure accounts for the large-scale variation in
the data. The first six terms in equation 2 model the
trend surface (Haining 1990); the final terms, 
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1,2,3, are included to model the relationship between
the bioindicator taxa, the annual average rainfall, and
the number of species of the response variable in a re-
gion. Naturally, when we modeled the number of butter-
fly species in a region as the response variable, 

 

Q

 

1

 

 is
omitted from the mean structure. Furthermore, when
modeling the Australian bird data, we found the fit and
predictive capability of the model improved by includ-
ing 

 

Q

 

 in the mean structure. We evaluated which of the
predictor variables was a useful indicator of the number
of species in a square for each model by determining if
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k

 

, 

 

k

 

 

 

5

 

 6,7,8, was significantly different from zero. We
used generalized least squares (Searle 1971; Rao 1973)
to account for the spatial correlations in the data when
parameters were estimated and hypothesis tests were
conducted. The error structure, 

 

d

 

(

 

s

 

), accounts for the
small-scale spatial variation in the response variable. The
spatial correlations in the data are characterized by the
off-diagonal elements in 

 

Σ

 

. It is important to note that
when we refer to large-scale and small-scale spatial varia-
tion we are referring to the decomposition of the data
based on the model in equation 1. This terminology
should not be confused with the similar use of these
terms to express the size of grid squares in the region
under investigation.

Geostatistical techniques were used to model the spa-
tial relationships in the response variables (for details
see Journel & Huijbregts [1978] or Cressie [1991]). The
spatial relationship between the number of species of
the response variable at two sites separated by the dis-
tance vector 

 

h

 

 is characterized by the variogram
(Matheron 1963). The spatial covariance was then ob-
tained from the variogram. In practice, the real vario-
gram is seldom if ever known and, as in this study, must
be estimated. But because in model 1 both the mean and
the small-scale variation depend on the spatial coor-
dinates at the sites, estimation of the variogram was
complicated (Cressie 1991; Gotway & Hartford 1996).
Consequently, for variogram estimation we first ob-
tained surrogate residuals by forming a grid based on lat-
itude and longitude, separating the data into the appro-
priate grid square, and then applying either median
polish (Tukey 1977; Cressie 1986) or, in one case, re-
gression analysis to obtain residuals that were then used
to obtain the empirical variogram. 

Because the empirical variogram is not necessarily
negative definite, we fit a negative definite semivario-
gram model to the empirical semivariogram estimated
from the residuals. In building the five models for this re-
search, we tried many different variogram models and in
each case selected the best-fitting model. 

2
1
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After we fit the semivariogram, we estimated the ele-
ments of 

 

Σ

 

 

 

and used generalized least squares to esti-
mate and make inferences about the parameters in
model 1. (See Gotway & Cressie [1990] and Gotway &
Hartford [1996] for discussions concerning the proper-
ties of the parameter estimates when 

 

Σ

 

 is estimated.)
Consequently, we were then able to evaluate the viabil-
ity of using bioindicators and average annual rainfall to
indicate species richness patterns. To determine if one
or both of the indicator species and average annual rain-
fall were useful to indicate the number of species in the
response variable, we tested the hypotheses 

(3)

for 

 

k
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 7,8,9. We used generalized least squares to esti-
mate the parameters and computed the sums of square
errors associated with each model. We conducted hy-
pothesis testing using standard hypothesis tests (Rao
1973). Because the predictor variables may be collinear,
for each data set many models were fit and tested to de-
termine which model was to be further evaluated by
cross-validation techniques. To determine the validity of
distributional assumptions, we examined residual plots
and normal probability plots. 

In equation 2 we included the terms involving latitude
and longitude (
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, and 

 

xy

 

) to account for large-
scale spatial variability. These effects (e.g., the latitude
gradient) may influence both the response variable and
one or both of the bioindicators. By including these terms
in the model, we accounted for any large-scale variation
in the trend surface of the response variable. Hence, we
were confident that should a significant relationship be-
tween one or both of the bioindicators and the response
variable be found, the significant result is not the conse-
quence of unmodeled large-scale variation that simulta-
neously influences the numbers of both species.

The development and implementation of successful
regional conservation strategies depends heavily on the
direct knowledge or reliable prediction of continental-
scale spatial biodiversity (Curnutt et al. 1994; Kaufman
1995). To illustrate the improvement in prediction accu-
racy that can be attributed to using bioindicators or aver-
age annual rainfall as predictors of species patterns, we
used cross-validation techniques. Universal kriging, a
spatial prediction methodology, was used to obtain pre-
dictions of the number of species in a particular square,
and cross-validation was used to demonstrate the degree
of improvement in the predictive accuracy of the num-
ber of species in a square attributable to the use of the
bioindicator variables or average annual rainfall (for de-
tails see Carroll & Pearson 1998).

Equation 1 is a specific example of the more general
model associated with universal kriging and a zero-
mean, second-order stationary random process, 

 

d

 

(

 

?

 

)
(Cressie 1991; Gotway & Hartford 1996; Haas 1996).
The more general model is

H0 : βk 0 and Ha : βk 0≠=

(4)

where bj21, j 5 1, . . . , p 1 1, are unknown parameters;
xj21 (s), j 5 1,. . . , p 1 1, are predictor variables associ-
ated with the datum at location s in D; and d(·) is as it
was defined above. In all of our applications we in-
cluded all six of the trend surface terms in the predictive
model. To determine the effect on the predictive accu-
racy of the added predictor variables, Q1, Q2, and Q3, we
applied universal kriging two times when predicting
each of the response variables. The first set of predic-
tions was obtained using universal kriging and only the
six trend surface terms as predictors. The second set of
predictions was obtained again using universal kriging
and the six trend surface terms, but this time we also
added one or more of the terms Q1, Q2, and Q3, depend-
ing on which ones were found to be significant when
the hypotheses in equation 3 were tested. The two sets
of predictions were then compared by means of the
cross-validation statistic presented below.

When obtaining the universal kriging prediction, we let
s0 represent a site with no observed datum for the re-
sponse variable. The universal kriging estimator of Z(s0) is

(5)

If the data are from a Gaussian process, the predictor in
equation 5 is unbiased and has minimum mean squared
prediction error. (See Cressie [1991:154] for the expres-
sion used to obtain the coefficients {ti}, i 5 1, . . . , n,
and the mean squared prediction error, s2(s0), associ-
ated with (so ).)

The degree of improvement in predictive accuracy
obtained by using one or more of Q1, Q2, and Q3 as pre-
dictors of the response variable may be evaluated by
cross-validation techniques (Stone 1974; Cressie 1991).
Cross-validation techniques compare the closeness of the
true number of species of the response variable (either
birds or butterflies) in a square to the predicted number.
The cross-validation statistic used in this research was

(6)

where Y(sj) is the true number of species of the re-
sponse variable at site s j  (in untransformed units), n is
the number of observations in the data set that are used
for cross-validation, and 2j (sj), j 5 1, . . . , n, is the pre-
diction of the untransformed number of species of the
response variable at site s j . For the three applications
for which we were predicting the number of bird spe-
cies in a square (in North America, India, and Australia),
no transformation of the response variable was required.
Hence, in these models the data Z(?) were in the original
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units, and we computed 2 j(s j) 5 2 j(s j) by leaving
Z(s j) out of the data set and using the remaining obser-
vations to predict Z(s j). When we were predicting the
number of butterfly species in a square (in North Amer-
ica and Australia), a log transformation of the data was
required to stabilize the variance. Consequently, in these
two cases the data Z(·) were the logarithms of the origi-
nal species counts, and we computed 2j(s j), an unbi-
ased predictor of Y(s j), using a function of 2j(s j)
(Cressie 1991: 135), where 2j(s j) was obtained by leav-
ing Z(s j) out of the data set and using the remaining ob-
servations to predict Z(s j).

The cross-validation statistic, CR, is a measure of good-
ness of prediction similar to the PRESS statistic often
used in regression analysis (Draper & Smith 1981). Small
values of CR indicate that, in general, the estimated val-
ues are close to the true values. In the next section we
present the result of the hypothesis tests and the cross-
validation studies for each of the five predictive models.

Results

We found a strong relationship between the number of
bird species and the number of butterfly species in both
North America and Australia (Figs. 5–7). The plots of the
number of bird species versus the number of tiger beetle
species showed that these taxa tended to be related, but
not as strongly as were birds and butterflies. The plots of
the number of butterfly species versus the number of ti-
ger beetle species indicated a fairly strong relationship
in North America and a weaker relationship in Australia.
Average annual rainfall was not closely related to the
number of either bird species or butterfly species in
North America and India. In Australia, however, the av-

Y
^

Z
^

Y
^

Z
^

Z
^

erage annual rainfall was more closely related to these
taxa, particularly to the number of butterfly species. 

Based on the results of hypothesis tests (all conducted
at the a 5 0.01 level) and cross-validation statistics, we
determined if one or more of the predictor variables—
the bioindicator taxa and average annual rainfall—were
useful for predicting species richness patterns. Looking
first at the data collected on the number of bird species
across North America, we found that the number of but-
terfly species and the number of tiger beetle species
were significantly related to the number of bird species
in a square. That is, we rejected both hypotheses H0 :

Figure 5. Species numbers and average annual rain-
fall in North America. The numbers on the axis lines 
indicate either species numbers or average annual 
rainfall.

Figure 6. Species numbers and average annual rain-
fall in India. The numbers on the axis lines indicate 
either species numbers or average annual rainfall. Ob-
servations obtained in northern mountainous regions 
are designated by squares.

Figure 7. Species numbers and average annual rain-
fall in Australia. The numbers on the axis lines indi-
cate either species numbers or average annual rain-
fall.
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b7 5 0 and H0 : b8 5 0. (See Table 1 for the associated p
values of these and other hypothesis tests.) We were un-
able to reject the hypothesis (H0 : b9 5 0) that average
annual rainfall was significantly related to the number of
bird species. The value of CR computed when the six
trend surface terms, Q1, and Q2 were included in the
mean structure was 6.198. When computed a second
time with only the six trend surface terms in the mean,
the value of CR was 8.714, an increase of over 40%. This
increase suggested that there is a substantial decrease in
predictive accuracy when the bioindicator taxa were
omitted from the model. Further investigation using
cross-validation statistics revealed that nearly all of the in-
crease in the predictive accuracy attributed to using but-
terflies and tiger beetles as predictors was due to the but-
terfly predictor variable. This result was also suggested by
the relative sizes of the test statistics when the hypothesis
tests were conducted. Hence, we concluded that, for pre-
dicting the number of bird species in North America, the
number of butterfly species was the more useful indicator. 

Turning to the butterfly data gathered in North Amer-
ica, we found that the number of tiger beetle species
was a useful predictor of the number of butterfly species
in a square and that the average annual rainfall was not
significant. We computed CR twice: once with and once
without tiger beetles in the mean structure. The respec-
tive values were 11.508 and 12.908. (Recall that the
trend surface terms were included in the mean structure
of all models.) Although the increase, about 12%, was
not as striking as in the first analysis, it should not be ig-
nored and suggests that tiger beetles can contribute to
the prediction of other taxa. 

To determine if these results could be generalized to
other parts of the world, we investigated data collected
in India and Australia. No butterfly data were available for
India. When the number of tiger beetle species and aver-
age annual rainfall were used as predictor variables of the
number of bird species, we found that tiger beetles were
a useful bioindicator and that the average annual rainfall
was not a useful predictor. The values of CR computed
first with and then without the number of tiger beetle
species in the mean structure were 58.759 and 96.939,
respectively. The nearly 65% decrease in predictive accu-

racy when tiger beetles were omitted provided strong ev-
idence of their usefulness as a bioindicator.

Finally, we look at the data collected in Australia.
When the number of bird species was modeled, we
found that the number of butterfly species was a useful
bioindicator but that the number of tiger beetle species
and the average annual rainfall were not significant pre-
dictors. The bivariate plot of birds versus butterflies (Fig.
7) suggested that the relationship between the number
of bird species in a square and the corresponding num-
ber of butterfly species may be nonlinear. Consequently,
in addition to Q1 we added Q  to account for the nonlin-
earity. Two subsequent hypothesis tests, one to deter-
mine if both of these terms can simultaneously be elimi-
nated from the model and a second to determine if the
quadratic term alone can be eliminated from the model,
were found to be significant, both p values # 0.0001.
Hence, both Q1 and Q  were retained in the model. The
value of CR computed with both the linear and qua-
dratic butterfly terms in the model was 11.532. When
these two terms were omitted, CR increased over 54%
to 17.797. These results supported those observed in
the North America data set that indicated the impor-
tance of butterflies as a bioindicator of birds.

The results of the analysis of the Australian butterfly
data revealed that one observation (in square number 4)
was highly influential when the parameter estimates in
equation 2 were obtained. That is, when this observa-
tion was omitted, the parameter estimates changed sub-
stantially. Consequently, this observation was particu-
larly poorly predicted when cross-validation statistics
were computed. Further investigation showed that the
influence of this observation was due to the general ten-
dency of trend surfaces to fit more imperfectly at the
edges than in the center (Ripley 1981) and the fact that
this square was located on the coast and two degrees
north of all of the other observations. Consequently, to
mitigate its influence, we deleted this observation in
subsequent analyses. The results of the hypothesis tests
indicated that neither the number of tiger beetle species
nor average annual rainfall was a useful predictor of the
number of butterfly species. But because the northern,
eastern, and southern coastal areas of Australia tend to

2
1

2
1

Table 1. Results of the hypotheses tests ( p values) used to determine if one or both indicator groups and average rainfall indicate the number 
of species in the response variable.*

Hypothesis

Response variable
H0 : b7 5 0
(butterfly)

H0 : b8 5 0
(tiger beetle)

H0 : b9 5 0
(rainfall)

Birds (North America) #0.0001 0.0005 0.5925
Butterflies (North America) — #0.0001 0.9883
Birds (India) — #0.0001 0.5976
Birds (Australia) #0.0001 0.2779 0.8708
Butterflies (Australia) — 0.1060 0.1198

*H0 , bk 5 0 and Ha , bk 5 0 for k 5 7, 8, 9.
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have both high average annual rainfall and high numbers
of butterfly species, we examined the data further to de-
termine why we did not find rainfall to be significant.
When average annual rainfall alone was included in the
mean structure and the trend surface terms were omit-
ted, we found a significant relationship between the
number of butterfly species and average annual rainfall.
This finding indicated that, perhaps due to the orienta-
tion of the high rainfall areas, the trend surface terms
captured the effects of heavy rainfall in the coastal areas,
and, thus, adding average annual rainfall to a model that
already contained the trend surface terms did not im-
prove the model fit. When we computed cross-valida-
tion statistics, we found that the value of this statistic de-
creased only slightly (from 26.812 to 26.423) when
average annual rainfall was added to the model that con-
tained only the trend surface terms.

To further explore the effects of average annual rain-
fall, we fitted one additional model. In this model we in-
cluded the trend surface terms and a dummy variable
that was set equal to one for observations that fall in
squares with average annual rainfall in the upper quar-
tile and set equal to zero otherwise. Hence, the dummy
variable simply indicated squares with high average an-
nual rainfall. We found the dummy variable to be a sig-
nificant predictor ( p 5 0.0026) and that the value of the
cross-validation statistic computed using this model was
22.002. The increase of nearly 22% in the cross-valida-
tion statistic when the dummy variable was omitted sug-
gested that modeling areas with high average annual
rainfall differently from other areas substantially im-
proved predictive accuracy.

Although the primary focus of this research was to in-
vestigate the benefits of using biotic and abiotic predic-
tors of areal species richness, we explored how predic-
tive accuracy could be further improved by modifying
model 1. Such modifications may be suggested by the re-
searcher’s biological knowledge of a particular region or
by skillful data analysis. For example, when developing
the model for predicting the number of bird species in
India, we found that predictive accuracy was substan-
tially improved by including a dummy variable that ac-
counted for the great disparity in the numbers of bird
species between the northern mountainous region and
the southern plain of the Indian subcontinent. More-
over, not only is there a considerable difference in the
average levels between these two regions, but the rela-
tionship between the number of tiger beetle species and
the number of bird species differs depending on the re-
gion (Fig. 6). When these effects were accounted for in
the model, the cross-validation statistic decreased by
more than half from 58.759 to 25.939. Habitat diversity
is a possible biological explanation for the disparities in
species numbers between the mountains and the plain
and differences in the relationship between the number
of tiger beetle species and the number of bird species.

In mountainous regions with considerable altitudinal re-
lief, habitat tends to be more diverse, and, consequently,
we found greater numbers of bird species. Hence, the
differences that we observed between the mountains
and the plain may be due to differences in the degrees of
habitat diversity between these areas, a factor we will
explore in future research.

Discussion

The results of this study indicate that carefully chosen
taxa, together with mean annual precipitation, can be
used to predict areal patterns of species numbers of
other taxa, often regardless of trophic level and vagility
differences. But the most useful biotic and abiotic indi-
cators for predicting other taxa differ somewhat, de-
pending on which continental area is investigated.
Therefore, applying untested indicators, which have
been found to be beneficial in one area, more broadly to
other regions may prove to be both misleading and
costly. Conversely, biological expertise and careful data
analysis may suggest additional useful indicators not pre-
viously considered. 

Although positive relationships in species numbers
among different taxa are more likely to exist at a conti-
nental scale, other confounding influences arise at this
scale that may alter the capacity of a particular taxon to
predict another in several different continental areas.
For instance, the data from Australia provide the most
obvious departure from generalizations found in North
America and the Indian subcontinent. This anomaly em-
phasizes that, at continental scales of investigation, histor-
ical and biogeographical factors (e.g., dispersion, plate
tectonics, and centers of speciation) must also be consid-
ered when taxa and abiotic factors are selected as candi-
dates for indicators. Long-term isolation (Pianka 1986),
short-term cyclic isolation (Haffer 1969), and invasion op-
portunities (Pearson & Ghorpade 1989), together with
differences in altitudinal relief, have had unique effects on
each continental area, resulting in divergent spatial pat-
terns. For instance, just as we found in the present study,
previous comparisons of species numbers among Austra-
lian taxa also have shown stronger relations to climate
than similar comparisons in Eurasia (Letcher & Harvey
1994) and North America (Schall & Pianka 1978; Smith et
al. 1994). Not only does Australia have a more precipitous
gradient in mean annual rainfall from the coast inland, but
the variance is so extreme that interior parts of Australia
may receive little or no rainfall for years at a time and then
be deluged. With such extremes in rainfall, precipitation
may have become an overwhelming factor not apparent
in comparable habitat types of other continental areas
(Schall & Pianka 1978; Smith et al. 1994). 

The extreme spatial and temporal variance in precipi-
tation in Australia may in turn make differential vagility
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among various taxa an important factor. Many Australian
birds show a remarkable ability to quickly locate and uti-
lize even the most isolated pockets of rainfall in inland
Australia (Keast 1981). Butterflies, to a much lesser ex-
tent, show some of these capabilities (Common & Wa-
terhouse 1982). Australian tiger beetles, however, have
evolved no such adaptations. Instead, they await rare
precipitation events as aestivating larvae or pupae, per-
haps for years (W. D. Sumlin III, personal communica-
tion). Thus, our assumption of the common influence of
climate on all taxa within a continental area is negated
for Australia. 

The choice of bioindicators for predicting congruent
spatial patterns of species richness also must take into
account biogeographical differences in ecological fac-
tors (Ricklefs & Schluter 1993). In Australia, especially
the arid central part of the continent, lizards have appar-
ently taken over some of the niches occupied by birds in
similar habitats on other continents (Schall & Pianka
1978). Thus, because of an often ambiguous negative re-
lation in species numbers of lizards and birds, possibly
because of competitive exclusion, lizards would be a
poor taxon to choose as a bioindicator for spatial pat-
terns of bird species numbers. In lowland tropical rain
forests, primates, either as competitors or as nest rob-
bers, appear occasionally to have a negative influence
on birds (Pearson 1982), and these two taxa would also
not be appropriate as predictors of each other’s spatial
patterns of species distributions.

By using spatial modeling techniques, we are able to
identify the most influential indicators of general areal
species patterns and to eliminate those that do not con-
tribute to improving prediction accuracy. These tech-
niques enable us to account for spatial dependencies in
the data, a critical consideration when inferences and
conclusions are drawn about which biotic and abiotic
indicators are useful for predicting spatial patterns of
species richness in each continental area. If spatial de-
pendencies exist but are not considered, invalid conclu-
sions may be drawn about the viability of certain indica-
tors (Carroll & Pearson 1998). Furthermore, prediction
accuracy may substantially increase when spatial corre-
lations are modeled. Hence, when vital conservation
strategy is being formulated, it is essential that spatial
correlations in the data be considered to obtain the most
accurate predictions of areal species richness.
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Appendix
Data for each square in the gridded maps 
(Figs. 1–4).a

North Americab

A B C D E F G

1 64 1 78 20 66 142
2 69 2 77 31 63 139
3 58 2 71 20 65 135
4 52 3 59 19 67 129
5 69 2 81 30 62 136
6 64 2 77 30 64 131
7 56 2 67 40 65 127
8 64 1 97 42 60 132
9 68 2 92 32 61 128

10 57 2 85 40 62 124
11 43 1 70 38 63 118
12 30 1 41 28 64 113
13 61 1 98 79 58 130
14 67 0 94 62 59 126
15 62 1 99 31 60 122
16 59 3 93 28 61 117
17 50 5 77 36 62 111
18 33 0 49 30 63 106
19 39 6 75 123 48 55
20 67 2 99 153 55 128
21 64 2 98 51 57 124
22 77 6 108 42 58 120
23 67 5 104 41 59 114
24 62 4 98 40 59 110
25 56 1 81 39 60 104
26 46 0 69 38 60 100
27 42 0 67 39 60 94
28 22 2 50 80 56 63
29 27 2 59 91 54 58
30 64 0 98 222 53 127
31 72 2 110 85 54 122
32 92 6 113 44 56 118
33 77 6 107 43 57 113
34 74 5 102 42 58 109
35 66 3 88 40 58 103
36 59 2 79 43 58 100
37 50 2 69 42 58 97
38 39 0 68 41 58 91
39 17 0 41 51 56 77
40 18 0 46 76 55 72
41 22 0 49 81 55 68
42 31 0 59 100 53 65
43 31 5 69 101 52 60
44 50 3 95 180 52 127
45 78 4 108 240 51 124
46 103 6 114 53 52 120
47 101 5 116 51 53 117
48 87 9 108 48 54 112
49 86 8 101 49 54 108
50 79 8 103 46 53 105
51 72 5 99 46 55 99
52 64 2 97 49 55 95
53 55 1 83 50 55 90
54 49 0 77 60 54 86
55 40 1 75 62 54 82
56 30 1 59 61 54 78
57 34 1 66 81 53 74
58 34 0 72 81 52 70
59 38 5 74 109 51 66

continued

North Americab

A B C D E F G

60 93 7 123 200 48 122
61 117 9 131 56 50 119
62 110 6 133 53 51 115
63 101 14 106 50 51 111
64 92 11 88 44 52 108
65 87 10 90 42 53 104
66 96 9 108 47 53 98
67 83 5 103 50 53 94
68 74 1 99 52 53 91
69 62 2 96 72 52 88
70 61 3 93 70 51 83
71 60 2 95 78 51 79
72 55 1 92 81 51 75
73 52 2 87 86 50 71
74 51 5 93 91 48 68
75 52 6 99 100 47 64
76 53 6 95 128 46 61
77 115 11 123 220 47 122
78 115 12 131 75 47 119
79 122 9 131 68 47 115
80 130 15 119 50 48 111
81 102 16 90 36 49 107
82 91 16 91 39 49 104
83 103 17 98 47 49 101
84 110 14 115 50 49 98
85 86 9 122 60 49 94
86 81 8 112 71 50 90
87 71 6 105 80 50 86
88 68 4 105 81 49 82
89 64 5 107 81 48 78
90 67 5 102 93 48 74
91 77 5 109 96 47 71
92 84 6 119 101 46 68
93 79 6 118 142 45 64
94 95 9 130 230 44 123
95 115 9 134 180 44 121
96 115 10 128 50 45 118
97 135 9 136 75 46 114
98 141 7 124 50 46 111
99 113 12 101 34 46 107

100 104 18 90 30 47 104
101 78 17 83 35 47 101
102 98 16 92 50 47 97
103 119 12 119 65 47 93
104 107 12 117 75 47 90
105 103 11 116 78 47 87
106 99 11 115 86 46 83
107 89 11 111 85 45 79
108 91 12 111 91 45 76
109 97 13 121 100 45 72
110 97 15 128 120 43 70
111 126 9 138 180 41 123
112 116 10 138 35 42 119
113 106 8 125 31 42 117
114 123 8 125 28 43 114
115 140 11 124 53 43 110
116 129 12 117 41 44 107
117 129 20 99 55 44 104
118 81 17 91 45 44 100

continued

North Americab

A B C D E F G

119 100 15 90 60 44 97
120 116 13 108 75 45 93
121 126 15 117 75 45 90
122 117 13 119 88 44 87
123 121 12 121 89 44 83
124 115 13 120 90 43 80
125 112 13 121 90 43 77
126 119 18 126 100 42 73
127 130 10 141 120 39 122
128 123 11 126 25 40 119
129 99 9 120 28 40 116
130 129 13 130 28 41 113
131 140 16 136 31 41 109
132 151 18 114 40 42 107
133 120 21 88 41 42 103
134 81 20 79 50 42 100
135 98 20 93 66 42 97
136 105 14 98 81 42 93
137 119 16 111 82 42 90
138 119 17 115 96 42 87
139 115 14 116 95 42 83
140 111 14 124 110 41 80
141 118 15 124 100 41 77
142 121 18 122 120 41 74
143 121 10 129 80 37 121
144 133 14 138 20 37 118
145 108 10 120 23 38 115
146 143 14 134 30 38 112
147 145 13 143 41 38 110
148 178 17 128 52 39 106
149 107 22 83 33 39 103
150 81 23 78 51 39 100
151 91 23 90 68 39 97
152 111 15 108 88 40 95
153 113 13 108 89 40 91
154 118 16 108 98 39 87
155 105 16 105 100 39 84
156 124 12 132 110 38 79
157 115 16 112 120 38 77
158 140 15 103 130 38 74
159 105 8 124 50 35 120
160 124 11 131 35 35 117
161 126 11 134 18 35 115
162 148 16 140 21 36 112
163 165 22 144 30 36 109
164 173 22 122 38 37 106
165 96 22 91 39 37 103
166 88 23 80 60 37 100
167 99 19 93 81 37 95
168 123 12 106 110 37 93
169 121 14 106 110 37 90
170 107 12 105 115 37 87
171 111 14 105 118 37 84
172 123 14 121 122 36 81
173 133 13 101 130 36 78
174 125 13 113 40 33 117
175 106 7 107 13 33 115
176 170 18 140 21 34 111
177 162 18 140 31 34 108

continued
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Appendix (continued)

North Americab

A B C D E F G

178 148 21 115 31 34 105
179 83 21 65 41 35 103
180 85 21 72 51 35 100
181 107 20 89 88 35 96
182 119 17 105 121 35 94
183 117 17 100 123 35 90
184 116 15 99 124 35 87
185 121 15 100 130 34 84
186 133 15 100 128 34 82
187 130 16 99 131 34 78
188 68 8 87 15 31 113
189 208 22 168 31 31 111
190 184 19 139 35 32 108
191 160 19 119 31 32 106
192 77 17 64 36 32 102
193 82 13 78 59 32 99
194 130 21 93 99 32 96
195 131 15 99 128 32 93
196 124 17 96 140 32 91
197 112 14 91 144 32 88
198 112 10 85 138 32 85
199 131 18 91 120 32 82
200 147 16 112 28 30 103
201 105 14 83 41 30 101
202 110 13 101 61 30 99
203 151 23 103 100 30 97
204 127 23 93 149 30 92
205 128 17 87 155 30 86
206 135 19 86 132 30 82
207 177 24 115 59 27 98
208 130 14 82 158 27 82

Indian subcontinentc

A B C D E F

1 3 261 40 36 73
2 5 224 30 34 71
3 6 171 45 34 75
4 5 326 75 34 78
5 3 118 10 31 68
6 2 174 15 31 71
7 10 116 45 31 75
8 38 387 100 31 78
9 29 374 170 31 80

10 6 341 350 31 95
11 1 110 5 28 63
12 1 124 10 28 67
13 4 145 10 28 69
14 1 120 15 28 71
15 1 129 35 28 75
16 14 166 60 28 78
17 25 410 170 28 80
18 40 460 180 28 83
19 41 480 210 27 86
20 58 537 300 27 88
21 51 533 200 28 91
22 45 518 380 26 93
23 3 106 5 27 63
24 3 114 10 27 67
25 13 140 20 27 69
26 1 137 40 27 71
27 3 158 65 27 75
28 5 165 95 27 78

continued

Indian subcontinentc

A B C D E F

29 8 165 115 27 80
30 8 169 100 26 83
31 24 179 150 26 86
32 25 203 175 26 88
33 41 430 250 25 91
34 3 105 15 23 69
35 3 153 55 23 71
36 5 175 85 23 75
37 6 178 85 23 78
38 11 181 110 22 80
39 17 187 115 22 83
40 20 203 160 22 86
41 29 193 190 22 88
42 18 344 250 22 91
43 7 155 60 21 71
44 4 193 210 21 74
45 8 184 80 21 77
46 8 181 115 21 79
47 8 193 125 21 82
48 23 210 175 20 85
49 21 211 280 19 74
50 8 174 80 19 77
51 9 181 110 19 79
52 20 196 140 19 82
53 33 231 330 15 75
54 14 171 60 16 77
55 15 187 75 16 79
56 39 247 300 14 77
57 24 177 80 14 79
58 48 232 350 11 77
59 27 173 75 11 79
60 30 225 100 9 78
61 51 193 125 7 81

Australiad

A B C D E F G

1 69 19 164 125 14 127
2 114 19 172 100 14 131
3 101 21 161 88 15 134
4 206 21 201 138 12 144
5 61 17 172 75 17 124
6 63 5 163 60 17 128
7 49 4 147 55 17 131
8 53 5 153 75 17 134
9 58 17 183 90 18 140

10 211 24 234 150 17 147
11 25 14 103 50 19 122
12 19 5 105 50 19 124
13 16 3 104 40 19 128
14 19 1 103 40 20 131
15 21 3 107 40 20 134
16 21 3 123 50 20 138
17 33 5 149 60 20 141
18 195 10 211 120 19 144
19 155 16 188 150 19 148
20 30 22 124 28 22 117
21 21 2 110 23 22 120
22 13 2 104 24 22 123
23 13 2 110 28 22 127
24 17 4 113 28 23 131
25 34 3 108 23 23 134
26 20 0 107 18 23 138

continued

Australiad

A B C D E F G

27 26 2 120 30 23 141
28 47 2 145 50 22 145
29 172 16 207 80 22 148
30 26 10 139 23 25 114
31 17 3 122 20 25 117
32 13 7 122 18 25 120
33 12 2 118 18 26 123
34 13 1 122 18 26 127
35 14 2 122 18 27 130
36 16 2 121 13 27 134
37 19 4 122 13 27 137
38 23 5 131 20 27 141
39 37 5 139 30 26 145
40 83 5 177 60 26 148
41 176 9 197 150 25 152
42 34 10 140 30 28 116
43 13 10 120 25 28 119
44 13 8 121 22 29 123
45 14 1 115 18 29 127
46 14 0 119 20 29 130
47 15 4 119 20 29 134
48 19 9 123 25 29 137
49 21 7 118 30 29 141
50 34 5 134 40 29 145
51 66 3 173 50 28 149
52 183 6 208 150 30 152
53 44 3 139 75 33 116
54 19 11 132 40 32 118
55 28 16 129 40 32 123
56 21 2 117 24 32 128
57 29 7 140 45 33 134
58 43 8 160 30 33 137
59 34 6 141 30 33 141
60 36 4 149 58 33 145
61 141 4 211 80 32 149
62 39 5 126 100 34 120
63 47 4 178 40 35 137
64 76 3 206 75 36 141
65 98 2 194 75 36 146
66 115 3 179 90 36 149
67 38 0 75 150 42 147

aData are from Pearson and Cassola
(1992), Pearson and Juliano (1993),
Carroll and Pearson (1998), Pearson
and Ghorpade (1989), and Pearson
and Juliano (1993).
bA, grid square number; B, number of
butterfly species; C, number of tiger
beetle species; D, number of bird spe-
cies; E, average annual rainfall (cm);
F, latitude (north); G, longitude (west).
cA, grid square number; B, number of ti-
ger beetle species; C, number of bird spe-
cies; D, average annual rainfall (cm); E,
latitude (north); F, longitude (east).
dA, grid square number; B, number of
butterfly species; C, number of tiger
beetle species; D, number of bird spe-
cies; E, average annual rainfall (cm);
F, latitude (south); G, longitude (east).


